105,837 research outputs found

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    Elastic energy of proteins and the stages of protein folding

    Full text link
    We propose a universal elastic energy for proteins, which depends only on the radius of gyration RgR_{g} and the residue number NN. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form Rg∼NνR_{g}\sim N^{\nu} in different regions. It shows three folding stages characterized by the progression with exponents ν=3/5,3/7,2/5\nu = 3/5, 3/7, 2/5, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding

    Diffraction of ultra-cold fermions by quantized light fields: Standing versus traveling waves

    Full text link
    We study the diffraction of quantum degenerate fermionic atoms off of quantized light fields in an optical cavity. We compare the case of a linear cavity with standing wave modes to that of a ring cavity with two counter-propagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the quantization procedure for the cavity field. For standing waves, no correlations develop between the cavity field and the atoms. Consequently, standing wave Fock states yield the same results as a classical standing wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast, for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This leads to a collapse and revival of the scattering probability even for Fock states. The Pauli Exclusion Principle manifests itself as an additional dephasing of the scattering probability

    Parameterization of the antiproton inclusive production cross section on nuclei

    Full text link
    A new parameterization of the antiproton inclusive production cross section in proton-proton and proton-nucleus collisions is proposed. A sample of consistent pA->pbar X$ experimental data sets measured on 1<A<208 nuclei, from 12 GeV up to 400 GeV incident energy, have been used to constrain the parameters. A broader energy domain is covered for the pp->pbar X reaction with a simplified functional form used in the fits. The agreement obtained with the data is good. The results are discussed.Comment: 10 pages, 11 figures, 7 tables, submitted to Phys. Rev.

    Extra-Dimensions effects on the fermion-induced quantum energy in the presence of a constant magnetic field

    Full text link
    We consider a U(1) gauge field theory with fermion fields (or with scalar fields) that live in a space with δ\delta extra compact dimensions, and we compute the fermion-induced quantum energy in the presence of a constant magnetic field, which is directed towards the x_3 axis. Our motivation is to study the effect of extra dimensions on the asymptotic behavior of the quantum energy in the strong field limit (eB>>M^{2}), where M=1/R. We see that the weak logarithmic growth of the quantum energy for four dimensions, is modified by a rapid power growth in the case of the extra dimensions.Comment: 18 pages, 4 figures, 2 tables, several correction

    Anomalous Magnetic and Thermal Behavior in Some RMn2O5 Oxides

    Full text link
    The RMn2O5 (R=Pr, Nd, Sm, and Eu) oxides showing magnetoelectric (ME) behavior have been prepared in polycrystalline form by a standard citrate route. The lattice parameters, obtained from the powder XRD analysis, follow the rare-earth contraction indicating the trivalent character of the R ions. Cusp-like anomalies in the magnetic susceptibility curve and sharp peaks in the specific heat were reported at the corresponding temperatures in RMn2O5 (R=Pr, Nd, Sm, and Eu) indicating the magnetic or electric ordering transitions.Comment: 2 pages, 1 table, 3 figures, will be published in the Proceedings of the 24th International Conference on Low Temperature Physic

    Optical nonlinearity enhancement of graded metallic films

    Full text link
    The effective linear and third-order nonlinear susceptibility of graded metallic films with weak nonlinearity have been investigated. Due to the simple geometry, we were able to derive exactly the local field inside the graded structures having a Drude dielectric gradation profile. We calculated the effective linear dielectric constant and third-order nonlinear susceptibility. We investigated the surface plasmon resonant effect on the optical absorption, optical nonlinearity enhancement, and figure of merit of graded metallic films. It is found that the presence of gradation in metallic films yields a broad resonant plasmon band in the optical region, resulting in a large enhancement of the optical nonlinearity and hence a large figure of merit. We suggest experiments be done to check our theoretical predictions, because graded metallic films can be fabricated more easily than graded particles.Comment: 11 pages, 2 eps figures, submitted to Applied Physics Letter

    Critical Fluctuation of Wind Reversals in Convective Turbulence

    Full text link
    The irregular reversals of wind direction in convective turbulence are found to have fluctuating intervals that can be related to critical behavior. It is shown that the net magnetization of a 2D Ising lattice of finite size fluctuates in the same way. Detrended fluctuation analysis of the wind reversal time series results in a scaling behavior that agrees with that of the Ising problem. The properties found suggest that the wind reversal phenomenon exhibits signs of self-organized criticality.Comment: 4 RevTeX pages + 3 figures in ep
    • …
    corecore