157,192 research outputs found

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    Two-component Fermi gas with a resonant interaction

    Full text link
    We consider a two-component Fermi gas interacting via a Feshbach molecular state. It is shown that an important energy scale is Eg=g4m3/(64π2)E_g=g^4m^3/(64\pi^2) where gg is the Feshbach coupling constant and mm the mass of the particles. Only when Eg≫ϵFE_g\gg \epsilon_{\rm F} where ϵF\epsilon_{\rm F} is the Fermi energy can the gas be expected to enter a universal state in the unitarity limit on the atomic side of the resonance where there are no molecules present. The universal state is distinct from the molecular gas state on the other side of the resonance. We furthermore calculate the energy of the gas for this universal state and our results are related to current experiments on 6^{6}Li and 40^{40}K.Comment: 4 pages, 2 figure

    Crossover from one to three dimensions for a gas of hard-core bosons

    Full text link
    We develop a variational theory of the crossover from the one-dimensional (1D) regime to the 3D regime for ultra-cold Bose gases in thin waveguides. Within the 1D regime we map out the parameter space for fermionization, which may span the full 1D regime for suitable transverse confinement.Comment: 4 pages, 2 figure

    Fluidization of granular media wetted by liquid 4^4He

    Full text link
    We explore experimentally the fluidization of vertically agitated PMMA spheres wetted by liquid 4^4He. By controlling the temperature around the λ\lambda point we change the properties of the wetting liquid from a normal fluid (helium I) to a superfluid (helium II). For wetting by helium I, the critical acceleration for fluidization (Γc\Gamma_c) shows a steep increase close to the saturation of the vapor pressure in the sample cell. For helium II wetting, Γc\Gamma_c starts to increase at about 75% saturation, indicating that capillary bridges are enhanced by the superflow of unsaturated helium film. Above saturation, Γc\Gamma_c enters a plateau regime where the capillary force between particles is independent of the bridge volume. The plateau value is found to vary with temperature and shows a peak at 2.1 K, which we attribute to the influence of the specific heat of liquid helium.Comment: 4 pages, 3 figures, Accepted by Phys. Rev. E as a rapid communicatio

    N K and Delta K states in the chiral SU(3) quark model

    Full text link
    The isospin I=0 and I=1 kaon-nucleon SS, PP, DD, FF wave phase shifts are studied in the chiral SU(3) quark model by solving the resonating group method (RGM) equation. The calculated phase shifts for different partial waves are in agreement with the experimental data. Furthermore, the structures of the ΔK\Delta K states with L=0, I=1 and I=2 are investigated. We find that the interaction between Δ\Delta and KK in the case of L=0, I=1 is attractive, which is not like the situation of the NKNK system, where the SS-wave interactions between NN and KK for both I=0 and I=1 are repulsive. Our numerical results also show that when the model parameters are taken to be the same as in our previous NNNN and YNYN scattering calculations, the ΔK\Delta K state with L=0 and I=1 is a weakly bound state with about 2 MeV binding energy, while the one with I=2 is unbound in the present one-channel calculation.Comment: 14 pages, 6 figures. PRC70,064004(2004

    A pseudo-potential analog for zero-range photoassociation and Feshbach resonance

    Full text link
    A zero-range approach to atom-molecule coupling is developed in analogy to the Fermi-Huang pseudo-potential treatment of atom-atom interactions. It is shown by explicit comparison to an exactly-solvable finite-range model that replacing the molecular bound-state wavefunction with a regularized delta-function can reproduce the exact scattering amplitude in the long-wavelength limit. Using this approach we find an analytical solution to the two-channel Feshbach resonance problem for two atoms in a spherical harmonic trap

    Kaon-nucleon interaction in the extended chiral SU(3) quark model

    Full text link
    The chiral SU(3) quark model is extended to include the coupling between the quark and vector chiral fields. The one-gluon exchange (OGE) which dominantly governs the short-range quark-quark interaction in the original chiral SU(3) quark model is now nearly replaced by the vector-meson exchange. Using this model, the isospin I=0 and I=1 kaon-nucleon S, P, D, F wave phase shifts are dynamically studied by solving the resonating group method (RGM) equation. Similar to those given by the original chiral SU(3) quark model, the calculated results for many partial waves are consistent with the experiment, while there is no improvement in this new approach for the P_{13} and D_{15} channels, of which the theoretical phase shifts are too much repulsive and attractive respectively when the laboratory momentum of the kaon meson is greater than 300 MeV.Comment: 19 pages, 16 figures. Accepted by Phys. Rev.

    S-wave quantum entanglement in a harmonic trap

    Full text link
    We analyze the quantum entanglement between two interacting atoms trapped in a spherical harmonic potential. At ultra-cold temperature, ground state entanglement is generated by the dominated s-wave interaction. Based on a regularized pseudo-potential Hamiltonian, we examine the quantum entanglement by performing the Schmidt decomposition of low-energy eigenfunctions. We indicate how the atoms are paired and quantify the entanglement as a function of a modified s-wave scattering length inside the trap.Comment: 10 pages, 5 figures, to be apear in PR
    • …
    corecore