4,247 research outputs found

    Quark Effects in the Gluon Condensate Contribution to the Scalar Glueball Correlation Function

    Full text link
    One-loop quark contributions to the dimension-four gluon condensate term in the operator product expansion (OPE) of the scalar glueball correlation function are calculated in the MS-bar scheme in the chiral limit of nfn_f quark flavours. The presence of quark effects is shown not to alter the cancellation of infrared (IR) singularities in the gluon condensate OPE coefficients. The dimension-four gluonic condensate term represents the leading power corrections to the scalar glueball correlator and, therein, the one-loop logarithmic contributions provide the most important condensate contribution to those QCD sum-rules independent of the low-energy theorem (the subtracted sum-rules).Comment: latex2e, 6 pages, 7 figures embedded in latex fil

    Restoration of kTk_T factorization for low pTp_T hadron hadroproduction

    Full text link
    We discuss the applicability of the kTk_T factorization theorem to low-pTp_T hadron production in hadron-hadron collision in a simple toy model, which involves only scalar particles and gluons. It has been shown that the kTk_T factorization for high-pTp_T hadron hadroproduction is broken by soft gluons in the Glauber region, which are exchanged among a transverse-momentum-dependent (TMD) parton density and other subprocesses of the collision. We explain that the contour of a loop momentum can be deformed away from the Glauber region at low pTp_T, so the above residual infrared divergence is factorized by means of the standard eikonal approximation. The kTk_T factorization is then restored in the sense that a TMD parton density maintains its universality. Because the resultant Glauber factor is independent of hadron flavors, experimental constraints on its behavior are possible. The kTk_T factorization can also be restored for the transverse single-spin asymmetry in hadron-hadron collision at low pTp_T in a similar way, with the residual infrared divergence being factorized into the same Glauber factor.Comment: 12 pages, 2 figures, version to appear in EPJ

    Anisotropic thermally activated diffusion in percolation systems

    Full text link
    We present a study of static and frequency-dependent diffusion with anisotropic thermally activated transition rates in a two-dimensional bond percolation system. The approach accounts for temperature effects on diffusion coefficients in disordered anisotropic systems. Static diffusion shows an Arrhenius behavior for low temperatures with an activation energy given by the highest energy barrier of the system. From the frequency-dependent diffusion coefficients we calculate a characteristic frequency ωc1/tc\omega_{c}\sim 1/t_{c}, related to the time tct_c needed to overcome a characteristic barrier. We find that ωc\omega_c follows an Arrhenius behavior with different activation energies in each direction.Comment: 5 pages, 4 figure

    Dielectrophoresis of charged colloidal suspensions

    Get PDF
    We present a theoretical study of dielectrophoretic (DEP) crossover spectrum of two polarizable particles under the action of a nonuniform AC electric field. For two approaching particles, the mutual polarization interaction yields a change in their respective dipole moments, and hence, in the DEP crossover spectrum. The induced polarization effects are captured by the multiple image method. Using spectral representation theory, an analytic expression for the DEP force is derived. We find that the mutual polarization effects can change the crossover frequency at which the DEP force changes sign. The results are found to be in agreement with recent experimental observation and as they go beyond the standard theory, they help to clarify the important question of the underlying polarization mechanisms

    Clonal spread of SCCmec type IV methicillin-resistant Staphylococcus aureus between community and hospital

    Get PDF
    ABSTRACTThe staphylococcal chromosome cassette (SCC)mec types of 382 hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) isolates in Taiwan were analysed over a 7-year period (1999–2005). There was an abrupt increase in SCCmec type IV in HA-MRSA during 2005. The molecular epidemiology of a subset (n = 69) of HA-MRSA isolates with SCCmec types III, IV or V was characterised and compared with that of community-acquired MRSA (CA-MRSA) (n = 26, collected during 2005). Pulsed-field gel electrophoresis revealed three major pulsotypes (A, B and C) and 15 minor clones. Pulsotypes B and C, which contained isolates carrying SCCmec types IV and V, respectively, included both CA-MRSA and HA-MRSA isolates. Among 24 toxin genes analysed, five genes had significant differential distribution between CA-MRSA and SCCmec type III HA-MRSA. Furthermore, among SCCmec type IV isolates, the seb gene was detected more commonly in HA-MRSA. Analysis of representative members of the three major pulsotypes by multilocus sequence typing revealed two sequence types (STs), namely ST239 (SCCmec III) and ST59 (SCCmec IV or SCCmec V). This suggests that ST59:SCCmec IV, which is usually community-acquired, has become an important nosocomial pathogen in the hospital studied

    From semiclassical transport to quantum Hall effect under low-field Landau quantization

    Full text link
    The crossover from the semiclassical transport to quantum Hall effect is studied by examining a two-dimensional electron system in an AlGaAs/GaAs heterostructure. By probing the magneto-oscillations, it is shown that the semiclassical Shubnikov-de Haas (SdH) formulation can be valid even when the minima of the longitudinal resistivity approach zero. The extension of the applicable range of the SdH theory could be due to the damping effects resulting from disorder and temperature. Moreover, we observed plateau-plateau transition like behavior with such an extension. From our study, it is important to include the positive magnetoresistance to refine the SdH theory.Comment: 11 pages, 5 figure

    A novel route to phase formation of cobalt oxyhydrates using KMnO4 as an oxidizing agent

    Full text link
    We have first succeefully synthesized the sodium cobalt oxyhydrate superconductors using KMnO4 as a de-intercalating and oxidizing agent. It is a novel route to form the superconductive phase of NaxCoO2.yH2O without resorting to the commonly used Br2/CH3CN solution. The role of the KMnO4 is to de-intercalate the Na+ from the parent compound Na0.7CoO2 and oxidize the Co ion as a result. The higher molar ratio of KMnO4 relative to the sodium content tends to remove more Na+ from the parent compound and results in a slight expansion of the c-axis in the unit cell. The superconducting transition temperature is 4.6-3.8 K for samples treated by the aqueous KMnO4 solution with the molar ratio of KMnO4 relative to the sodium content in the range of 0.3 and 2.29.Comment: 10 pages, 3 figure

    Preparation of atomically clean and flat Si(100) surfaces by low-energy ion sputtering and low-temperature annealing

    Full text link
    Si(100) surfaces were prepared by wet-chemical etching followed by 0.3-1.5keV Ar ion sputtering, either at elevated or room temperature. After a brief anneal under ultrahigh vacuum conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(100) surface. However, subsequent 300eV Ar ion sputtering at room temperature followed by a 973K anneal yields atomically clean and flat Si(100) surfaces suitable for nanoscale device fabrication.Comment: 13 pages, 3 figures, to be published in Applied Surface Scienc

    Unconventional spin density wave in (TMTSF)2PF6 below T* ~ 4K

    Get PDF
    The presence of subphases in spin-density wave (SDW) phase of (TMTSF)2PF6 below T* ~ 4K has been suggested by several experiments but the nature of the new phase is still controversial. We have investigated the temperature dependence of the angular dependence of the magnetoresistance in the SDW phase which shows different features for temperatures above and below T*. For T > 4K the magnetoresistance can be understood in terms of the Landau quantization of the quasiparticle spectrum in a magnetic field, where the imperfect nesting plays the crucial role. We propose that below T* ~ 4K the new unconventional SDW (USDW) appears modifying dramatically the quasiparticle spectrum. Unlike conventional SDW the order parameter of USDW depends on the quasiparticle momentum. The present model describes many features of the angular dependence of magnetoresistance reasonably well. Therefore, we may conclude that the subphase in (TMTSF)2PF6 below T* ~ 4K is described as SDW plus USDW.Comment: 7 pages, 9 figures, RevTeX4; misprint corrected, references updated, a few sentences adde
    corecore