120,753 research outputs found

    Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition

    Full text link
    In the marine environment, many fields have fluctuations over a large range of different spatial and temporal scales. These quantities can be nonlinear \red{and} non-stationary, and often interact with each other. A good method to study the multiple scale dynamics of such time series, and their correlations, is needed. In this paper an application of an empirical mode decomposition based time dependent intrinsic correlation, \red{of} two coastal oceanic time series, temperature and dissolved oxygen (saturation percentage) is presented. The two time series are recorded every 20 minutes \red{for} 7 years, from 2004 to 2011. The application of the Empirical Mode Decomposition on such time series is illustrated, and the power spectra of the time series are estimated using the Hilbert transform (Hilbert spectral analysis). Power-law regimes are found with slopes of 1.33 for dissolved oxygen and 1.68 for temperature at high frequencies (between 1.2 and 12 hours) \red{with} both close to 1.9 for lower frequencies (time scales from 2 to 100 days). Moreover, the time evolution and scale dependence of cross correlations between both series are considered. The trends are perfectly anti-correlated. The modes of mean year 3 and 1 year have also negative correlation, whereas higher frequency modes have a much smaller correlation. The estimation of time-dependent intrinsic correlations helps to show patterns of correlations at different scales, for different modes.Comment: 35 pages with 22 figure

    Optimized Double-well quantum interferometry with Gaussian squeezed-states

    Full text link
    A Mach-Zender interferometer with a gaussian number-difference squeezed input state can exhibit sub-shot-noise phase resolution over a large phase-interval. We obtain the optimal level of squeezing for a given phase-interval Δθ0\Delta\theta_0 and particle number NN, with the resulting phase-estimation uncertainty smoothly approaching 3.5/N3.5/N as Δθ0\Delta\theta_0 approaches 10/N, achieved with highly squeezed states near the Fock regime. We then analyze an adaptive measurement scheme which allows any phase on (π/2,π/2)(-\pi/2,\pi/2) to be measured with a precision of 3.5/N3.5/N requiring only a few measurements, even for very large NN. We obtain an asymptotic scaling law of Δθ(2.1+3.2ln(ln(NtottanΔθ0)))/Ntot\Delta\theta\approx (2.1+3.2\ln(\ln(N_{tot}\tan\Delta\theta_0)))/N_{tot}, resulting in a final precision of 10/Ntot\approx 10/N_{tot}. This scheme can be readily implemented in a double-well Bose-Einstein condensate system, as the optimal input states can be obtained by adiabatic manipulation of the double-well ground state.Comment: updated versio

    Lagrangian Cascade in Three-Dimensional Homogeneous and Isotropic Turbulence

    Full text link
    In this work, the scaling statistics of the dissipation along Lagrangian trajectories are investigated by using fluid tracer particles obtained from a high resolution direct numerical simulation with Reλ=400Re_{\lambda}=400. Both the energy dissipation rate ϵ\epsilon and the local time averaged ϵτ\epsilon_{\tau} agree rather well with the lognormal distribution hypothesis. Several statistics are then examined. It is found that the autocorrelation function ρ(τ)\rho(\tau) of ln(ϵ(t))\ln(\epsilon(t)) and variance σ2(τ)\sigma^2(\tau) of ln(ϵτ(t))\ln(\epsilon_{\tau}(t)) obey a log-law with scaling exponent β=β=0.30\beta'=\beta=0.30 compatible with the intermittency parameter μ=0.30\mu=0.30. The qqth-order moment of ϵτ\epsilon_{\tau} has a clear power-law on the inertial range 10<τ/τη<10010<\tau/\tau_{\eta}<100. The measured scaling exponent KL(q)K_L(q) agrees remarkably with qζL(2q)q-\zeta_L(2q) where ζL(2q)\zeta_L(2q) is the scaling exponent estimated using the Hilbert methodology. All these results suggest that the dissipation along Lagrangian trajectories could be modelled by a multiplicative cascade.Comment: 10 pages with 7 figures accepted for Journal of Fluid Mechanics as Rapid

    Free-standing all-polymer microring resonator optical filter

    Get PDF
    Free-standing all-polymer microring resonator optical filters as prototypical elements in flexible integrated lightwave circuits are demonstrated. The fabrication and measurement methods are discussed. The measured spectrum shows good agreement with theoretical expectations. The crucial 'critical' coupling condition is achieved, resulting in a measurement limited -27 dB extinction of the filter output on resonances
    corecore