129,116 research outputs found

    Momentum Distribution for Bosons with Positive Scattering Length in a Trap

    Full text link
    The coordinate-momentum double distribution function ρ(r,p)d3rd3p\rho ({\bf r}, {\bf p}) d^{3}rd^{3}p is calculated in the local density approximation for bosons with positive scattering length aa in a trap. The calculation is valid to the first order of aa. To clarify the meaning of the result, it is compared for a special case with the double distribution function ρwd3rd3p\rho_{w}d^{3} rd^{3}p of Wigner.Comment: Latex fil

    Solvent coarse-graining and the string method applied to the hydrophobic collapse of a hydrated chain

    Full text link
    Using computer simulations of over 100,000 atoms, the mechanism for the hydrophobic collapse of an idealized hydrated chain is obtained. This is done by coarse-graining the atomistic water molecule positions over 129,000 collective variables that represent the water density field and then using the string method in these variables to compute the minimum free energy pathway (MFEP) for the collapsing chain. The dynamical relevance of the MFEP (i.e. its coincidence with the mechanism of collapse) is validated a posteriori using conventional molecular dynamics trajectories. Analysis of the MFEP provides atomistic confirmation for the mechanism of hydrophobic collapse proposed by ten Wolde and Chandler. In particular, it is shown that lengthscale-dependent hydrophobic dewetting is the rate-limiting step in the hydrophobic collapse of the considered chain.Comment: 11 pages, 7 figures, including supporting informatio

    Semileptonic B(Bs,Bc)B(B_s, B_c) decays in the light-cone QCD sum rules

    Full text link
    Semileptonic BB(Bs,BcB_s, B_c) decays are investigated systematically in the light-cone QCD sum rules. Special emphasis is put on the LCSR calculation on weak form factors with an adequate chiral current correlator, which turns out to be particularly effective to control the pollution by higher twist components of spectator mesons. The result for each channel depends on the distribution amplitude of the the producing meson. The leading twist distribution amplitudes of the related heavy mesons and charmonium are worked out by a model approach in the reasonable way. A practical scenario is suggested to understand the behavior of weak form factors in the whole kinematically accessible ranges. The decay widths and branching ratios are estimated for several BB(BcB_c) decay modes of current interest.Comment: 8 pages, talk given by the first arthur at 4th International Conference on Flavor Physics (ICFP 2007), Beijing, China, Sept 24-28, 200

    TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells

    Get PDF
    Using a screening strategy, we identified the tetratricopeptide repeat (TPR) motif protein, Tetratricopeptide repeat domain 5 (TTC5, also known as stress responsive activator of p300 or Strap) as required for the survival of human acute myeloid leukemia (AML) cells. TTC5 is a stress-inducible transcription cofactor known to interact directly with the histone acetyltransferase EP300 to augment the TP53 response. Knockdown (KD) of TTC5 induced apoptosis of both murine and human AML cells, with concomitant loss of clonogenic and leukemia-initiating potential; KD of EP300 elicited a similar phenotype. Consistent with the physical interaction of TTC5 and EP300, the onset of apoptosis following KD of either gene was preceded by reduced expression of BCL2 and increased expression of pro-apoptotic genes. Forced expression of BCL2 blocked apoptosis and partially rescued the clonogenic potential of AML cells following TTC5 KD. KD of both genes also led to the accumulation of MYC, an acetylation target of EP300, and the form of MYC that accumulated exhibited relative hypoacetylation at K148 and K157, residues targeted by EP300. In view of the ability of excess cellular MYC to sensitize cells to apoptosis, our data suggest a model whereby TTC5 and EP300 cooperate to prevent excessive accumulation of MYC in AML cells and their sensitization to cell death. They further reveal a hitherto unappreciated role for TTC5 in leukemic hematopoiesis

    From insulator to quantum Hall liquid at low magnetic fields

    Full text link
    We have performed low-temperature transport measurements on a GaAs two-dimensional electron system at low magnetic fields. Multiple temperature-independent points and accompanying oscillations are observed in the longitudinal resistivity between the low-field insulator and the quantum Hall (QH) liquid. Our results support the existence of an intermediate regime, where the amplitudes of magneto-oscillations can be well described by conventional Shubnikov-de Haas theory, between the low-field insulator and QH liquid.Comment: Magneto-oscillations governed by Shubnikov-de Haas theory are observed between the low-field insulator and quantum Hall liqui

    Gamma-ray bursts: postburst evolution of fireballs

    Get PDF
    The postburst evolution of fireballs that produce γ\gamma-ray bursts is studied, assuming the expansion of fireballs to be adiabatic and relativistic. Numerical results as well as an approximate analytic solution for the evolution are presented. Due to adoption of a new relation among tt, RR and γ\gamma (see the text), our results differ markedly from the previous studies. Synchrotron radiation from the shocked interstellar medium is attentively calculated, using a convenient set of equations. The observed X-ray flux of GRB afterglows can be reproduced easily. Although the optical afterglows seem much more complicated, our results can still present a rather satisfactory approach to observations. It is also found that the expansion will no longer be highly relativistic about 4 days after the main GRB. We thus suggest that the marginally relativistic phase of the expansion should be investigated so as to check the afterglows observed a week or more later.Comment: 17 pages, 4 figures, MNRAS in pres

    Evidence of discrete scale invariance in DLA and time-to-failure by canonical averaging

    Full text link
    Discrete scale invariance, which corresponds to a partial breaking of the scaling symmetry, is reflected in the existence of a hierarchy of characteristic scales l0, c l0, c^2 l0,... where c is a preferred scaling ratio and l0 a microscopic cut-off. Signatures of discrete scale invariance have recently been found in a variety of systems ranging from rupture, earthquakes, Laplacian growth phenomena, ``animals'' in percolation to financial market crashes. We believe it to be a quite general, albeit subtle phenomenon. Indeed, the practical problem in uncovering an underlying discrete scale invariance is that standard ensemble averaging procedures destroy it as if it was pure noise. This is due to the fact, that while c only depends on the underlying physics, l0 on the contrary is realisation-dependent. Here, we adapt and implement a novel so-called ``canonical'' averaging scheme which re-sets the l0 of different realizations to approximately the same value. The method is based on the determination of a realization-dependent effective critical point obtained from, e.g., a maximum susceptibility criterion. We demonstrate the method on diffusion limited aggregation and a model of rupture.Comment: 14 pages, 6 figures, in press in Int. J. Mod. Phys.
    corecore