333 research outputs found

    COVER: A Heuristic Greedy Adversarial Attack on Prompt-based Learning in Language Models

    Full text link
    Prompt-based learning has been proved to be an effective way in pre-trained language models (PLMs), especially in low-resource scenarios like few-shot settings. However, the trustworthiness of PLMs is of paramount significance and potential vulnerabilities have been shown in prompt-based templates that could mislead the predictions of language models, causing serious security concerns. In this paper, we will shed light on some vulnerabilities of PLMs, by proposing a prompt-based adversarial attack on manual templates in black box scenarios. First of all, we design character-level and word-level heuristic approaches to break manual templates separately. Then we present a greedy algorithm for the attack based on the above heuristic destructive approaches. Finally, we evaluate our approach with the classification tasks on three variants of BERT series models and eight datasets. And comprehensive experimental results justify the effectiveness of our approach in terms of attack success rate and attack speed. Further experimental studies indicate that our proposed method also displays good capabilities in scenarios with varying shot counts, template lengths and query counts, exhibiting good generalizability

    TARGET: Template-Transferable Backdoor Attack Against Prompt-based NLP Models via GPT4

    Full text link
    Prompt-based learning has been widely applied in many low-resource NLP tasks such as few-shot scenarios. However, this paradigm has been shown to be vulnerable to backdoor attacks. Most of the existing attack methods focus on inserting manually predefined templates as triggers in the pre-training phase to train the victim model and utilize the same triggers in the downstream task to perform inference, which tends to ignore the transferability and stealthiness of the templates. In this work, we propose a novel approach of TARGET (Template-trAnsfeRable backdoor attack aGainst prompt-basEd NLP models via GPT4), which is a data-independent attack method. Specifically, we first utilize GPT4 to reformulate manual templates to generate tone-strong and normal templates, and the former are injected into the model as a backdoor trigger in the pre-training phase. Then, we not only directly employ the above templates in the downstream task, but also use GPT4 to generate templates with similar tone to the above templates to carry out transferable attacks. Finally we have conducted extensive experiments on five NLP datasets and three BERT series models, with experimental results justifying that our TARGET method has better attack performance and stealthiness compared to the two-external baseline methods on direct attacks, and in addition achieves satisfactory attack capability in the unseen tone-similar templates

    Accelerated and Deep Expectation Maximization for One-Bit MIMO-OFDM Detection

    Full text link
    In this paper we study the expectation maximization (EM) technique for one-bit MIMO-OFDM detection (OMOD). Arising from the recent interest in massive MIMO with one-bit analog-to-digital converters, OMOD is a massive-scale problem. EM is an iterative method that can exploit the OFDM structure to process the problem in a per-iteration efficient fashion. In this study we analyze the convergence rate of EM for a class of approximate maximum-likelihood OMOD formulations, or, in a broader sense, a class of problems involving regression from quantized data. We show how the SNR and channel conditions can have an impact on the convergence rate. We do so by making a connection between the EM and the proximal gradient methods in the context of OMOD. This connection also gives us insight to build new accelerated and/or inexact EM schemes. The accelerated scheme has faster convergence in theory, and the inexact scheme provides us with the flexibility to implement EM more efficiently, with convergence guarantee. Furthermore we develop a deep EM algorithm, wherein we take the structure of our inexact EM algorithm and apply deep unfolding to train an efficient structured deep net. Simulation results show that our accelerated exact/inexact EM algorithms run much faster than their standard EM counterparts, and that the deep EM algorithm gives promising detection and runtime performances

    Machine Unlearning Method Based On Projection Residual

    Full text link
    Machine learning models (mainly neural networks) are used more and more in real life. Users feed their data to the model for training. But these processes are often one-way. Once trained, the model remembers the data. Even when data is removed from the dataset, the effects of these data persist in the model. With more and more laws and regulations around the world protecting data privacy, it becomes even more important to make models forget this data completely through machine unlearning. This paper adopts the projection residual method based on Newton iteration method. The main purpose is to implement machine unlearning tasks in the context of linear regression models and neural network models. This method mainly uses the iterative weighting method to completely forget the data and its corresponding influence, and its computational cost is linear in the feature dimension of the data. This method can improve the current machine learning method. At the same time, it is independent of the size of the training set. Results were evaluated by feature injection testing (FIT). Experiments show that this method is more thorough in deleting data, which is close to model retraining.Comment: This paper is accepted by DSAA2022. The 9th IEEE International Conference on Data Science and Advanced Analytic

    FILM: How can Few-Shot Image Classification Benefit from Pre-Trained Language Models?

    Full text link
    Few-shot learning aims to train models that can be generalized to novel classes with only a few samples. Recently, a line of works are proposed to enhance few-shot learning with accessible semantic information from class names. However, these works focus on improving existing modules such as visual prototypes and feature extractors of the standard few-shot learning framework. This limits the full potential use of semantic information. In this paper, we propose a novel few-shot learning framework that uses pre-trained language models based on contrastive learning. To address the challenge of alignment between visual features and textual embeddings obtained from text-based pre-trained language model, we carefully design the textual branch of our framework and introduce a metric module to generalize the cosine similarity. For better transferability, we let the metric module adapt to different few-shot tasks and adopt MAML to train the model via bi-level optimization. Moreover, we conduct extensive experiments on multiple benchmarks to demonstrate the effectiveness of our method

    Tactile Active Inference Reinforcement Learning for Efficient Robotic Manipulation Skill Acquisition

    Full text link
    Robotic manipulation holds the potential to replace humans in the execution of tedious or dangerous tasks. However, control-based approaches are not suitable due to the difficulty of formally describing open-world manipulation in reality, and the inefficiency of existing learning methods. Thus, applying manipulation in a wide range of scenarios presents significant challenges. In this study, we propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL), aimed at achieving efficient training. To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process. This integration improves the algorithm's training efficiency and adaptability to sparse rewards. Additionally, we utilize a vision-based tactile sensor to provide detailed perception for manipulation tasks. Finally, we employ a model-based approach to imagine and plan appropriate actions through free energy minimization. Simulation results demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks. It enables agents to excel in both dense and sparse reward tasks with just a few interaction episodes, surpassing the SAC baseline. Furthermore, we conduct physical experiments on a gripper screwing task using our method, which showcases the algorithm's rapid learning capability and its potential for practical applications
    • …
    corecore