1,017 research outputs found

    Block Belief Propagation for Parameter Learning in Markov Random Fields

    Full text link
    Traditional learning methods for training Markov random fields require doing inference over all variables to compute the likelihood gradient. The iteration complexity for those methods therefore scales with the size of the graphical models. In this paper, we propose \emph{block belief propagation learning} (BBPL), which uses block-coordinate updates of approximate marginals to compute approximate gradients, removing the need to compute inference on the entire graphical model. Thus, the iteration complexity of BBPL does not scale with the size of the graphs. We prove that the method converges to the same solution as that obtained by using full inference per iteration, despite these approximations, and we empirically demonstrate its scalability improvements over standard training methods.Comment: Accepted to AAAI 201

    Data-Driven Methods and Applications for Optimization under Uncertainty and Rare-Event Simulation

    Full text link
    For most of decisions or system designs in practice, there exist chances of severe hazards or system failures that can be catastrophic. The occurrence of such hazards is usually uncertain, and hence it is important to measure and analyze the associated risks. As a powerful tool for estimating risks, rare-event simulation techniques are used to improve the efficiency of the estimation when the risk occurs with an extremely small probability. Furthermore, one can utilize the risk measurements to achieve better decisions or designs. This can be achieved by modeling the task into a chance constrained optimization problem, which optimizes an objective with a controlled risk level. However, recent problems in practice have become more data-driven and hence brought new challenges to the existing literature in these two domains. In this dissertation, we will discuss challenges and remedies in data-driven problems for rare-event simulation and chance constrained problems. We propose a robust optimization based framework for approaching chance constrained optimization problems under a data-driven setting. We also analyze the impact of tail uncertainty in data-driven rare-event simulation tasks. On the other hand, due to recent breakthroughs in machine learning techniques, the development of intelligent physical systems, e.g. autonomous vehicles, have been actively investigated. Since these systems can cause catastrophes to public safety, the evaluation of their machine learning components and system performance is crucial. This dissertation will cover problems arising in the evaluation of such systems. We propose an importance sampling scheme for estimating rare events defined by machine learning predictors. Lastly, we discuss an application project in evaluating the safety of autonomous vehicle driving algorithms.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163270/1/zhyhuang_1.pd
    • …
    corecore