378 research outputs found

    In-N-Out: Face Video Inversion and Editing with Volumetric Decomposition

    Full text link
    3D-aware GANs offer new capabilities for creative content editing, such as view synthesis, while preserving the editing capability of their 2D counterparts. These methods use GAN inversion to reconstruct images or videos by optimizing a latent code, allowing for semantic editing by manipulating the code. However, a model pre-trained on a face dataset (e.g., FFHQ) often has difficulty handling faces with out-of-distribution (OOD) objects, e.g., heavy make-up or occlusions. We address this issue by explicitly modeling OOD objects in face videos. Our core idea is to represent the face in a video using two neural radiance fields, one for the in-distribution and the other for the out-of-distribution object, and compose them together for reconstruction. Such explicit decomposition alleviates the inherent trade-off between reconstruction fidelity and editability. We evaluate our method's reconstruction accuracy and editability on challenging real videos and showcase favorable results against other baselines.Comment: Project page: https://in-n-out-3d.github.io

    Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction

    Get PDF
    A composite cathode material for lithium ion battery applications, Mo-doped LiFePO4/C, is obtained through a facile and fast microwave-assisted synthesis method. Rietveld analysis of LiFePO4-based structural models using synchrotron X-ray diffraction data shows that Mo-ions substitute onto the Fe sites and displace Fe-ions to the Li sites. Supervalent Mo6+ doping can act to introduce Li ion vacancies due to the charge compensation effect and therefore facilitate lithium ion diffusion during charging/discharging. Transmission electron microscope images demonstrate that the pure and doped LiFePO4 nanoparticles were uniformly covered by an approximately 5 nm thin layer of graphitic carbon. Amorphous carbon on the graphitic carbon-coated pure and doped LiFePO4 particles forms a three-dimensional (3D) conductive carbon network, effectively improving the conductivity of these materials. The combined effects of Mo-doping and the 3D carbon network dramatically enhance the electrochemical performance of these LiFePO4 cathodes. In particular, Mo-doped LiFePO4/C delivers a reversible capacity of 162 mA h g(-1) at a current of 0.5 C and shows enhanced capacity retention compared to that of undoped LiFePO4/C. Moreover, the electrode exhibits excellent rate capability, with an associated high discharge capacity and good electrochemical reversibility

    The NS1 protein of influenza a virus interacts with heat shock protein Hsp90 in human alveolar basal epithelial cells: Implication for virus-induced apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous study showed that the NS1 protein of highly pathogenic avian influenza A virus H5N1 induced caspase-dependent apoptosis in human alveolar basal epithelial cells (A549), supporting its function as a proapoptotic factor during viral infection, but the mechanism is still unknown.</p> <p>Results</p> <p>To characterize the mechanism of NS1-induced apoptosis, we used a two-hybrid system to isolate the potential NS1-interacting partners in A549 cells. We found that heat shock protein 90 (Hsp90) was able to interact with the NS1 proteins derived from both H5N1 and H3N2 viruses, which was verified by co-immunoprecitation assays. Significantly, the NS1 expression in the A549 cells dramatically weakened the interaction between Apaf-1 and Hsp90 but enhanced its interaction with cytochrome c (Cyt c), suggesting that the competitive binding of NS1 to Hsp90 might promote the Apaf-1 to associate with Cyt c and thus facilitate the activation of caspase 9 and caspase 3.</p> <p>Conclusions</p> <p>The present results demonstrate that NS1 protein of Influenza A Virus interacts with heat hock protein Hsp90 and meidates the apoptosis induced by influenza A virus through the caspase cascade.</p

    The interaction between the PARP10 protein and the NS1 protein of H5N1 AIV and its effect on virus replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the process that AIV infect hosts, the NS1 protein can act on hosts, change corresponding signal pathways, promote the translation of virus proteins and result in virus replication.</p> <p>Results</p> <p>In our study, we found that PARP domain and Glu-rich region of PARP10 interacted with NS1, and the presence of NS1 could induce PARP10 migrate from cytoplasm to nucleus. NS1 high expression could reduce the endogenous PARP10 expression. Cell cycle analysis showed that with inhibited PARP10 expression, NS1 could induce cell arrest in G2-M stage, and the percentage of cells in G2-M stage rise from the previous 10%-45%, consistent with the cell proliferation result. Plague forming unit measurement showed that inhibited PARP10 expression could help virus replication.</p> <p>Conclusions</p> <p>In a word, our results showed that NS1 acts on host cells and PARP10 plays a regulating role in virus replication.</p

    ISPTM: an Iterative Search Algorithm for Systematic Identification of Post-translational Modifications from Complex Proteome Mixtures

    Get PDF
    Identifying protein post-translational modifications (PTMs) from tandem mass spectrometry data of complex proteome mixtures is a highly challenging task. Here we present a new strategy, named iterative search for identifying PTMs (ISPTM), for tackling this challenge. The ISPTM approach consists of a basic search with no variable modification, followed by iterative searches of many PTMs using a small number of them (usually two) in each search. The performance of the ISPTM approach was evaluated on mixtures of 70 synthetic peptides with known modifications, on an 18-protein standard mixture with unknown modifications and on real, complex biological samples of mouse nuclear matrix proteins with unknown modifications. ISPTM revealed that many chemical PTMs were introduced by urea and iodoacetamide during sample preparation and many biological PTMs, including dimethylation of arginine and lysine, were significantly activated by Adriamycin treatment in NM associated proteins. ISPTM increased the MS/MS spectral identification rate substantially, displayed significantly better sensitivity for systematic PTM identification than the conventional all-in-one search approach and offered PTM identification results that were complementary to InsPecT and MODa, both of which are established PTM identification algorithms. In summary, ISPTM is a new and powerful tool for unbiased identification of many different PTMs with high confidence from complex proteome mixtures

    Interaction of influenza virus NS1 protein with growth arrest-specific protein 8

    Get PDF
    NS1 protein is the only non-structural protein encoded by the influenza A virus, and it contributes significantly to disease pathogenesis by modulating many virus and host cell processes. A two-hybrid screen for proteins that interact with NS1 from influenza A yielded growth arrest-specific protein 8. Gas8 associated with NS1 in vitro and in vivo. Deletion analysis revealed that the N-terminal 260 amino acids of Gas8 were able to interact with NS1, and neither the RNA-binding domain nor the effector domain of NS1 was sufficient for the NS1 interaction. We also found that actin, myosin, and drebrin interact with Gas8. NS1 and β-actin proteins could be co-immunoprecipitated from extracts of transfected cells. Furthermore, actin and Gas8 co-localized at the plasma membrane. These results are discussed in relation to the possible functions of Gas8 protein and their relevance in influenza virus release

    DeepCBS: shedding light on the impact of mutations occurring at CTCF binding sites

    Get PDF
    CTCF-mediated chromatin loops create insulated neighborhoods that constrain promoter-enhancer interactions, serving as a unit of gene regulation. Disruption of the CTCF binding sites (CBS) will lead to the destruction of insulated neighborhoods, which in turn can cause dysregulation of the contained genes. In a recent study, it is found that CTCF/cohesin binding sites are a major mutational hotspot in the cancer genome. Mutations can affect CTCF binding, causing the disruption of insulated neighborhoods. And our analysis reveals a significant enrichment of well-known proto-oncogenes in insulated neighborhoods with mutations specifically occurring in anchor regions. It can be assumed that some mutations disrupt CTCF binding, leading to the disruption of insulated neighborhoods and subsequent activation of proto-oncogenes within these insulated neighborhoods. To explore the consequences of such mutations, we develop DeepCBS, a computational tool capable of analyzing mutations at CTCF binding sites, predicting their influence on insulated neighborhoods, and investigating the potential activation of proto-oncogenes. Futhermore, DeepCBS is applied to somatic mutation data of liver cancer. As a result, 87 mutations that disrupt CTCF binding sites are identified, which leads to the identification of 237 disrupted insulated neighborhoods containing a total of 135 genes. Integrative analysis of gene expression differences in liver cancer further highlights three genes: ARHGEF39, UBE2C and DQX1. Among them, ARHGEF39 and UBE2C have been reported in the literature as potential oncogenes involved in the development of liver cancer. The results indicate that DQX1 may be a potential oncogene in liver cancer and may contribute to tumor immune escape. In conclusion, DeepCBS is a promising method to analyze impacts of mutations occurring at CTCF binding sites on the insulator function of CTCF, with potential extensions to shed light on the effects of mutations on other functions of CTCF

    Antimicrobial Mechanism of Antimicrobial Peptide from Paenibacillus ehimensis against Penicillium expansum Spores

    Get PDF
    Penicillium expansum, a common spoilage organism in postharvest fruits, can cause fruit decay and deterioration and endanger human health. It is of great significance to investigate the antimicrobial mechanism of the antimicrobial peptide from Paenibacillus ehimensis on P. expansum spores. The antimicrobial activity of the antimicrobial peptide against P. expansum spores was determined by using the two-fold dilution method as well as measuring the time-killing curve. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to evaluate the effect of the antimicrobial peptide on the ultrastructure of P. expansum spores. The effects of the antimicrobial peptide on the cell membrane and reactive oxygen species (ROS) accumulation of P. expansum were analyzed by fluorescence probes. The results showed that the minimum inhibitory concentration (MIC) of the antimicrobial peptide against P. expansum spores was 3.5 AU/mL. The spore germination rate was significantly decreased by 28.30%, 84.57% and 100% by the antimicrobial peptide at concentrations of 0.5 MIC, 1 MIC and 2 MIC compared with the blank control (P < 0.05). After treatment with the antimicrobial peptide, the spores appeared seriously sunken, the intracellular contents were leaked out, and the morphology and structure were changed. The antimicrobial peptide damaged the cell wall of P. expansum, resulting in the leakage of alkaline phosphatase. The antimicrobial peptide depolarized the cell membrane potential in a dose-dependent manner, and increased the cell membrane permeability, leading to K+ leakage. The fluidity of the cell membrane was increased, which in turn resulted in a significant decrease in DPH fluorescence intensity (P < 0.05). The integrity of the cell membrane was damaged by the antimicrobial peptide, so the fluorescence intensity of SYTOX-Green and the contamination rate of PI were increased. Moreover, the antimicrobial peptide at 1 MIC and 2 MIC increased the fluorescence intensity of DCFH-DA significantly (P < 0.05) and resulted in ROS accumulation, which affected the physiology and metabolism of P. expansum spores. This study indicated that the target sites of the antimicrobial peptide against P. expansum spores were mainly the cell membrane and ROS metabolism
    • …
    corecore