94 research outputs found

    YOLO-BEV: Generating Bird's-Eye View in the Same Way as 2D Object Detection

    Full text link
    Vehicle perception systems strive to achieve comprehensive and rapid visual interpretation of their surroundings for improved safety and navigation. We introduce YOLO-BEV, an efficient framework that harnesses a unique surrounding cameras setup to generate a 2D bird's-eye view of the vehicular environment. By strategically positioning eight cameras, each at a 45-degree interval, our system captures and integrates imagery into a coherent 3x3 grid format, leaving the center blank, providing an enriched spatial representation that facilitates efficient processing. In our approach, we employ YOLO's detection mechanism, favoring its inherent advantages of swift response and compact model structure. Instead of leveraging the conventional YOLO detection head, we augment it with a custom-designed detection head, translating the panoramically captured data into a unified bird's-eye view map of ego car. Preliminary results validate the feasibility of YOLO-BEV in real-time vehicular perception tasks. With its streamlined architecture and potential for rapid deployment due to minimized parameters, YOLO-BEV poses as a promising tool that may reshape future perspectives in autonomous driving systems

    Case report: Primary immunodeficiency due to a novel mutation in CARMIL2 and its response to combined immunomodulatory therapy

    Get PDF
    Capping protein regulator and myosin 1 linker 2 (CARMIL2) is necessary for invadopodia formation, cell polarity, lamellipodial assembly, membrane ruffling, acropinocytosis, and collective cell migration. CARMIL2 deficiency is a rare autosomal recessive disease characterized by dysfunction in naïve T-cell activation, proliferation, differentiation, and effector function and insufficient responses in T-cell memory. In this paper, we report a 9-year-old female patient with a novel pathogenic variant in CARMIL2 (c.2063C > G:p.Thr688Arg) who presented with various symptoms of primary immunodeficiencies including recurrent upper and lower respiratory infections, perioral and perineum papules, reddish impetiginized atopic dermatitis, oral ulcer, painful urination and vaginitis, otitis media, and failure to thrive. A missense mutation leading to insufficient CARMIL2 protein expression, reduced absolute T-cell and natural killer cell (NK cell) counts, and marked skewing to the naïve T-cell form was identified and indicated defective maturation of T cells and B cells. Following 1 year of multitargeted treatment with corticosteroids, hydroxychloroquine, mycophenolate mofetil, and thymosin, the patient presented with significant regression in rashes. CD4+ T-cell, CD8+ T-cell, and NK cell counts were significantly improved

    Tuber indicum and T. lijiangense colonization differentially regulates plant physiological responses and mycorrhizosphere bacterial community of Castanopsis rockii seedlings

    Get PDF
    Black truffles and white truffles are widely studied around the world, but their effects on plant growth and physiological responses, and on the mycorrhizosphere bacterial community of the host plant remain unclear. Here, mycorrhizal colonization of Castanopsis rockii by Tuber indicum (Chinese black truffle) and T. lijiangense (Chinese white truffle), respectively, was induced in a greenhouse study, and their effects on host growth, physiological responses and mycorrhizosphere bacterial communities were compared. The results show that colonization of both Tuber species significantly increased leaf photosynthetic rate, leaf P concentration and mycorrhizosphere acid phosphatase activity, as well as richness of mycorrhizosphere bacterial communities of C. rockii seedlings. However, T. indicum colonization on the one hand significantly decreased tartrate content, bacterial acid phosphatase, phoC gene abundance in the mycorrhizosphere, and peroxidase (POD) activity of ectomycorrhizal root tips, but on the other hand increased mycorrhizosphere pH and superoxide dismutase (SOD) of ectomycorrhizal root tips, compared to T. lijiangense colonization. Moreover, principal coordinate and β-diversity analyses show significant differences in mycorrhizosphere bacterial community composition between T. indicum and T. lijiangese colonized C. rockii seedlings. Finally, the relative abundance of the bacterium Agromyces cerinus significantly correlated to mycorrhizosphere acid phosphatase activity and leaf P concentration, suggesting that this bacterium might play an important role in P mobilization and acquisition. Overall, these results suggest that T. indicum and T. lijiangense differently regulate their host plant’s physiological responses and mycorrhizosphere bacterial community

    Identification and Characterization of Full-Length cDNAs in Channel Catfish (Ictalurus punctatus) and Blue Catfish (Ictalurus furcatus)

    Get PDF
    Background: Genome annotation projects, gene functional studies, and phylogenetic analyses for a given organism all greatly benefit from access to a validated full-length cDNA resource. While increasingly common in model species, fulllength cDNA resources in aquaculture species are scarce. Methodology and Principal Findings: Through in silico analysis of catfish (Ictalurus spp.) ESTs, a total of 10,037 channel catfish and 7,382 blue catfish cDNA clones were identified as potentially encoding full-length cDNAs. Of this set, a total of 1,169 channel catfish and 933 blue catfish full-length cDNA clones were selected for re-sequencing to provide additional coverage and ensure sequence accuracy. A total of 1,745 unique gene transcripts were identified from the full-length cDNA set, including 1,064 gene transcripts from channel catfish and 681gene transcripts from blue catfish, with 416 transcripts shared between the two closely related species. Full-length sequence characteristics (ortholog conservation, UTR length, Kozak sequence, and conserved motifs) of the channel and blue catfish were examined in detail. Comparison of gene ontology composition between full-length cDNAs and all catfish ESTs revealed that the full-length cDNA set is representative of the gene diversity encoded in the catfish transcriptome. Conclusions: This study describes the first catfish full-length cDNA set constructed from several cDNA libraries. The catfish full-length cDNA sequences, and data gleaned from sequence characteristics analysis, will be a valuable resource fo

    A Zinc-Rich Coating Fabricated on a Magnesium Alloy by Oxide Reduction

    No full text
    The corrosion resistance of magnesium alloys could be enhanced by covering metallic coatings on the surface. The zinc-rich coating is one of these metallic coatings. To fabricate a zinc-rich coating on magnesium alloys, the substrate should be pretreated carefully, and a protective atmosphere is usually required. In this research, a zinc-rich coating was successfully fabricated on the AZ91D magnesium alloy in air by a diffusion alloying method, with zinc oxide as the zinc source. At the same time, the pretreatment of the magnesium alloy matrix was greatly simplified. The as-diffusion-alloyed zinc-rich intermetallic layer was investigated, utilizing SEM, EDS, and XRD, respectively. It is inferred that zinc oxide was reduced into Zn atoms by the active Mg atoms, and the Mg atoms were coming from the magnesium alloy matrix. Then the Zn atoms passed through the oxide film and formed an intermetallic layer on the magnesium alloy surface. Thus, taking advantage of the activity of Mg atoms, magnesium alloys could be surface alloyed with oxides

    Hydrogen entry into steel during atmospheric corrosion process

    No full text
    Hydrogen entry and permeation into iron were measured by an electrochemical method during atmospheric corrosion reaction. The hydrogen permeation was enhanced on passive films because the hydrogen adsorption increased by the hydrogen evolution mechanism which is different from that on a bear iron surface. The permeation rate during a wet and dry corrosion cycle showed a maximum in the drying process depending upon the surface pH and the corrosion potential. The pollutant such as Na2SO3 which decreases the pH and the corrosion potential causes an increase in the permeation rate. The mechanism of the change in the permeation rate during the wet and dry cycles is explained by the polarization diagram of the electrode covered by thin water layer. © 2005 Elsevier Ltd. All rights reserved

    Train-Induced Vibration Monitoring of Track Slab under Long-Term Temperature Load Using Fiber-Optic Accelerometers

    No full text
    The train-induced vibration response provides a flexible solution for the real-time monitoring deformation of high-speed railway track slab in actual operation. This paper proposes a long-term real-time monitoring method for track slab deformation based on wavelet packet energy (WPE) using fiber optic accelerometers to record train-induced vibration. We found that the vibration response law of track slab deformation could be established by using the WPE of the frequency band covering the first- and second-order frequencies induced by the adjacent carriages. A field test was carried out for more than one year on the Beijing–Shanghai high-speed railway to investigate the train-induced vibration response law of track slab that was continuously deformed under a long-term temperature load. The maximum values of the WPE characteristic index appeared in winter and summer, and they were positively correlated with the temperature difference between the air environment and the track slab under the daily temperature load. These results were demonstrated to be consistent with the track slab deformation law for long-term and daily temperature loads. The novel method based on fiber optic accelerometers and WPE provides a new method for the long-term and real-time monitoring of track slab deformation

    Train-Induced Vibration Monitoring of Track Slab under Long-Term Temperature Load Using Fiber-Optic Accelerometers

    No full text
    The train-induced vibration response provides a flexible solution for the real-time monitoring deformation of high-speed railway track slab in actual operation. This paper proposes a long-term real-time monitoring method for track slab deformation based on wavelet packet energy (WPE) using fiber optic accelerometers to record train-induced vibration. We found that the vibration response law of track slab deformation could be established by using the WPE of the frequency band covering the first- and second-order frequencies induced by the adjacent carriages. A field test was carried out for more than one year on the Beijing–Shanghai high-speed railway to investigate the train-induced vibration response law of track slab that was continuously deformed under a long-term temperature load. The maximum values of the WPE characteristic index appeared in winter and summer, and they were positively correlated with the temperature difference between the air environment and the track slab under the daily temperature load. These results were demonstrated to be consistent with the track slab deformation law for long-term and daily temperature loads. The novel method based on fiber optic accelerometers and WPE provides a new method for the long-term and real-time monitoring of track slab deformation
    • …
    corecore