8,889 research outputs found

    Electric Character of Strange Stars

    Get PDF
    Using the Thomas-Fermi model, we investigated the electric characteristics of a static non-magnetized strange star without crust in this paper. The exact solutions of electron number density and electric field above the quark surface are obtained. These results are useful if we are concerned about physical processes near the quark matter surfaces of strange stars.Comment: 4 pages, 2 figures, LaTeX, Published in Chinese Physics Letters, Vol.16, p.77

    Too massive neutron stars: The role of dark matter?

    Full text link
    The maximum mass of a neutron star is generally determined by the equation of state of the star material. In this study, we take into account dark matter particles, assumed to behave like fermions with a free parameter to account for the interaction strength among the particles, as a possible constituent of neutron stars. We find dark matter inside the star would soften the equation of state more strongly than that of hyperons, and reduce largely the maximum mass of the star. However, the neutron star maximum mass is sensitive to the particle mass of dark matter, and a very high neutron star mass larger than 2 times solar mass could be achieved when the particle mass is small enough. Such kind of dark-matter- admixed neutron stars could explain the recent measurement of the Shapiro delay in the radio pulsar PSR J1614-2230, which yielded a neutron star mass of 2 times solar mass that may be hardly reached when hyperons are considered only, as in the case of the microscopic Brueckner theory. Furthermore, in this particular case, we point out that the dark matter around a neutron star should also contribute to the mass measurement due to its pure gravitational effect. However, our numerically calculation illustrates that such contribution could be safely ignored because of the usual diluted dark matter environment assumed. We conclude that a very high mass measurement of about 2 times solar mass requires a really stiff equation of state in neutron stars, and find a strong upper limit (<= 0.64 GeV) for the particle mass of non-self- annihilating dark matter based on the present model.Comment: Astroparticle Physics (2012) in Pres

    Approximate Closest Community Search in Networks

    Get PDF
    Recently, there has been significant interest in the study of the community search problem in social and information networks: given one or more query nodes, find densely connected communities containing the query nodes. However, most existing studies do not address the "free rider" issue, that is, nodes far away from query nodes and irrelevant to them are included in the detected community. Some state-of-the-art models have attempted to address this issue, but not only are their formulated problems NP-hard, they do not admit any approximations without restrictive assumptions, which may not always hold in practice. In this paper, given an undirected graph G and a set of query nodes Q, we study community search using the k-truss based community model. We formulate our problem of finding a closest truss community (CTC), as finding a connected k-truss subgraph with the largest k that contains Q, and has the minimum diameter among such subgraphs. We prove this problem is NP-hard. Furthermore, it is NP-hard to approximate the problem within a factor (2−Δ)(2-\varepsilon), for any Δ>0\varepsilon >0 . However, we develop a greedy algorithmic framework, which first finds a CTC containing Q, and then iteratively removes the furthest nodes from Q, from the graph. The method achieves 2-approximation to the optimal solution. To further improve the efficiency, we make use of a compact truss index and develop efficient algorithms for k-truss identification and maintenance as nodes get eliminated. In addition, using bulk deletion optimization and local exploration strategies, we propose two more efficient algorithms. One of them trades some approximation quality for efficiency while the other is a very efficient heuristic. Extensive experiments on 6 real-world networks show the effectiveness and efficiency of our community model and search algorithms

    Self-organization and phase transition in financial markets with multiple choices

    Full text link
    Market confidence is essential for successful investing. By incorporating multi-market into the evolutionary minority game, we investigate the effects of investor beliefs on the evolution of collective behaviors and asset prices. When there exists another investment opportunity, market confidence, including overconfidence and under-confidence, is not always good or bad for investment. The roles of market confidence is closely related to market impact. For low market impact, overconfidence in a particular asset makes an investor become insensitive to losses and a delayed strategy adjustment leads to a decline in wealth, and thereafter, one's runaway from the market. For high market impact, under-confidence in a particular asset makes an investor over-sensitive to losses and one's too frequent strategy adjustment leads to a large fluctuation in asset prices, and thereafter, a decrease in the number of agents. At an intermediate market impact, the phase transition occurs. No matter what the market impact is, an equilibrium between different markets exists, which is reflected in the occurrence of similar price fluctuations in different markets. A theoretical analysis indicates that such an equilibrium results from the coupled effects of strategy updating and shift in investment. The runaway of the agents trading a specific asset will lead to a decline in the asset price volatility and such a decline will be inhibited by the clustering of the strategies. A uniform strategy distribution will lead to a large fluctuation in asset prices and such a fluctuation will be suppressed by the decrease in the number of agents in the market. A functional relationship between the price fluctuations and the numbers of agents is found
    • 

    corecore