90 research outputs found

    Design of Intelligent Home Security Alarm System under STC89C51 Single Chip Microcomputer

    Get PDF
    In order to improve the security of home residence, this paper studies and designs an intelligent home security alarm system, using STC89C51 single chip microcomputer as the main controller of the security system, and real-time monitoring by controlling the human pyroelectric infrared sensor and smoke sensor in the case of strangers invading the security range and showing signs of fire. Once the abnormal situation is found, the intelligent home security alarm system will start the acousto-optic alarm prompted by the LED lamp and pass through the information processing system of the GSM module. Send an abnormal text message to the user of the security system at the first time face, and finally realize the purpose of modern intelligent home security alarm

    PREF: Phasorial Embedding Fields for Compact Neural Representations

    Full text link
    We present an efficient frequency-based neural representation termed PREF: a shallow MLP augmented with a phasor volume that covers significant border spectra than previous Fourier feature mapping or Positional Encoding. At the core is our compact 3D phasor volume where frequencies distribute uniformly along a 2D plane and dilate along a 1D axis. To this end, we develop a tailored and efficient Fourier transform that combines both Fast Fourier transform and local interpolation to accelerate na\"ive Fourier mapping. We also introduce a Parsvel regularizer that stables frequency-based learning. In these ways, Our PREF reduces the costly MLP in the frequency-based representation, thereby significantly closing the efficiency gap between it and other hybrid representations, and improving its interpretability. Comprehensive experiments demonstrate that our PREF is able to capture high-frequency details while remaining compact and robust, including 2D image generalization, 3D signed distance function regression and 5D neural radiance field reconstruction

    A CASE STUDY: EVALUATING THE DIFFERENCE OF TECHNIQUE BY USING EFFICIENCY INDEX IN ELITE MALE FREESTYLE SWIMMERS

    Get PDF
    The purpose of the study was to evaluating the difference of technique by using efficiency index in elite male freestyle swimmers during their training periods. Two swimmers were selected to take a 6 x 50 m freestyle descend set in a 50 m swimming pool. The mean velocity (MV), stroke length (SL), stroke cycle (Se), efficiency index (El) and concentration of blood lactate (BL) were measured and compared to illuminate the difference of swimming technique and its impact on the performance level. According to previous and present studies, efficiency index is a useful measurement to evaluate the efficiency of the technique of swimmers. From limited number of subjects in the study, we speculated that the most effective intensity of improving efficiency of swimming technique is a little bit higher than anaerobic threshold

    Paramagnetic behaviour of silver nanoparticles generated by decomposition of silver oxalate

    Get PDF
    Silver oxalate Ag2C2O4, was already proposed for soldering applications, due to the formation when it is decomposed by a heat treatment, of highly sinterable silver nanoparticles. When slowly decomposed at low temperature (125 °C), the oxalate leads however to silver nanoparticles isolated from each other. As soon as these nanoparticles are formed, the magnetic susceptibility at room temperature increases from -3.14 10-7 emu.Oe-1.g-1 (silver oxalate) up to -1.92 10-7 emu.Oe-1.g-1 (metallic silver). At the end of the oxalate decomposition, the conventional diamagnetic behaviour of bulk silver, is observed from room temperature to 80 K. A diamagnetic-paramagnetic transition is however revealed below 80 K leading at 2 K, to silver nanoparticles with a positive magnetic susceptibility. This original behaviour, compared to the one of bulk silver, can be ascribed to the nanometric size of the metallic particles

    Visually-Aware Audio Captioning With Adaptive Audio-Visual Attention

    Full text link
    Audio captioning aims to generate text descriptions of audio clips. In the real world, many objects produce similar sounds. How to accurately recognize ambiguous sounds is a major challenge for audio captioning. In this work, inspired by inherent human multimodal perception, we propose visually-aware audio captioning, which makes use of visual information to help the description of ambiguous sounding objects. Specifically, we introduce an off-the-shelf visual encoder to extract video features and incorporate the visual features into an audio captioning system. Furthermore, to better exploit complementary audio-visual contexts, we propose an audio-visual attention mechanism that adaptively integrates audio and visual context and removes the redundant information in the latent space. Experimental results on AudioCaps, the largest audio captioning dataset, show that our proposed method achieves state-of-the-art results on machine translation metrics.Comment: INTERSPEECH 202

    Dielectric barrier discharge-based defect engineering method to assist flash sintering

    Get PDF
    Oxygen vacancy OV plays an important role in a flash sintering (FS) process. In defect engineering, the methods of creating oxygen vacancy defects include doping, heating, and etching, and all of them often have complex processes or equipment. In this study, we used dielectric barrier discharge (DBD) as a new defect engineering technology to increase oxygen vacancy concentrations of green billets with different ceramics (ZnO, TiO2, and 3 mol% yttria-stabilized zirconia (3YSZ)). With an alternating current (AC) power supply of 10 kHz, low-temperature plasma was generated, and a specimen could be treated in different atmospheres. The effect of the DBD treatment was influenced by atmosphere, treatment time, and voltage amplitude of the power supply. After the DBD treatment, the oxygen vacancy defect concentration in ZnO samples increased significantly, and a resistance test showed that conductivity of the samples increased by 2–3 orders of magnitude. Moreover, the onset electric field (E) of ZnO FS decreased from 5.17 to 0.86 kV/cm at room temperature (RT); while in the whole FS, the max power dissipation decreased from 563.17 to 27.94 W. The defect concentration and conductivity of the green billets for TiO2 and 3YSZ were also changed by the DBD, and then the FS process was modified. It is a new technology to treat the green billet of ceramics in very short time, applicable to other ceramics, and beneficial to regulate the FS process

    Tembusu Virus in Ducks, China

    Get PDF
    In China in 2010, a disease outbreak in egg-laying ducks was associated with a flavivirus. The virus was isolated and partially sequenced. The isolate exhibited 87%–91% identity with strains of Tembusu virus, a mosquito-borne flavivirus of the Ntaya virus group. These findings demonstrate emergence of Tembusu virus in ducks
    corecore