101 research outputs found

    The Performance of Syngas-Fueled SOFCs Predicted by a Reduced Order Model (ROM): Temperature and Fuel Composition Effects

    Get PDF
    An electrochemical reduced order model (ROM) has been developed in this study to simulate the performance of syngas-fueled anode-supported SOFCs with coupled bulk chemical reactions and multi-species gas diffusion in the electrodes. Experimental V-I curves with syngas fuel were used to validate the model to ensure its high fidelity. The model was used to investigate the effects of fuel composition and temperature on the electrochemical performance of the cell, chemical reaction rate and concentration distributions of gaseous species across the anode. The results show that H2 electro-oxidation dominates the overall cell performance, and that CO contributes to the performance indirectly via water gas shift (WGS) reaction, especially at low CO:H2 ratio and low current densities. Increasing the temperature enhances the performance of syngas-fueled SOFCs by increasing the rates of total electrochemical oxidation and the WGS reaction. The present work provides fundamental knowledge and framework for future performance simulations of large-scale and more complex syngas-fueled SOFC systems. Solid oxide fuel cells (SOFCs) offer high efficiency pathways to producing electricity from fuels.1–4 Systems are being developed for a variety of applications, operating on a range of fuels from hydrogen to natural gas to syngas.5–9 Computational models that can accurately describe the gas phase reactions, electrochemistry, and the heat and mass transfer within SOFC cells and modules are an invaluable tool for the design of efficient and cost-effective systems.10–17 Models described in the open literature can be generally grouped into three categories - classical semi-empirical models, full-order models (FOM) and reduced-order models (ROM). The categories differ in how they manage the trade-off between accuracy and computational effort. Semi-empirical models estimate the cell voltage by subtracting the overpotentials resulting from activation, ohmic and concentration polarizations from the Nernst potential.18 Three major simplifications are typically used: 1) the Butler-Volmer equations are approximated by either linear or Tafel equations; 2) the concentration overpotential is correlated to gas diffusion using empirical or semi-empirical relationships; and 3) the model ignores cell geometry. These approximations simplify the analysis, but have several drawbacks: 1) coupling between the gas diffusion and activation/concentration losses is ignored, which is particularly problematic for systems using syngas fuel; 2) the exchange current density at the triple-phase-boundary (TPB) is more complicated for multi-step elementary reactions, also problematic for systems in which chemical reactions such as reforming or water-gas-shift are occurring; and 3) the limiting current density is obtained by an empirical relation, which means the effects of cell and stack design are not always captured accurately. Full order models were first introduced in the 1990s.19 These approaches include all the relevant physical and chemical processes in the cell, including gas diffusion through the porous electrodes, mass and momentum conservation in the channels, charge transport within electrodes and the electrolyte as described by Ohm\u27s law, and charge-transfer kinetics as described by the Butler-Volmer equation. Early versions described the H2 electro-oxidation reaction using global reactions by a finite volume method.19,20 More recent FOMs have incorporated the microscale elementary reactions occurring near TPBs with cell performance.21–23 FOM approaches offer the highest resolution and accuracy (short of complete 3-D models), but are more computationally expensive than semi-empirical approaches, which could be an issue when applied to 3D SOFC stack simulations. Reduced order models attempt to retain much of the accuracy of FOMs while reducing the computational burden. This is accomplished in several ways. A common approach is to simplify the physics, such as the gas diffusion or the electrochemical reactions. Specifically, the diffusion could be simplified to a single dimension, typically in the flow direction24–27 or anode-thickness direction.28–31 This captures some of the physics due to 1D gas diffusion and heterogeneous reactions at the solid/gas interfaces, while significantly reducing the computational effort required. Another more widely used approach to reducing the model order is by projection-based mathematical reduction, in which a set of data is mapped into sub-set with certain accuracy. One interesting ROM developed in this way by PNNL32 uses a sub-model to predict the performance and response of a SOFC stack. The sub-model was constructed using a simple empirical relationship generated from sampling a limited number of input parameters, ranking of input parameters, constructing relations between inputs and outputs, and studying sensitivity of inputs in different regions. Such an approach can be used to rapidly explore performance under specific scenarios to aid in the design process. Here, we use the first approach to developing ROMs, but instead of simplifying the diffusion procedure, we lowered the order of model by reducing the electronic/ionic charge transfer and the electrochemical reactions from the 3D electrode domains to the 2D electrode/electrolyte interface. Meanwhile, the electrolyte is treated as an interface between anode and cathode by a pure ionic resistor. Since the concentration of gas species varies significantly along the direction of gas flow and thickness, the 3D diffusion feature in the electrode domains is kept in this study for further development of stack model. ROMs have been used successfully to explore the competition between different physical processes. Friedrich et al.33,34 developed a ROM that includes detailed H2-oxidation elementary reactions for coupled charge-transfer and surface chemistry in the anode, and gas diffusion in the flow direction and cell thickness direction were decoupled and calculated separately. Another ROM developed by Campanari et al.35 simulated the combined electrochemical oxidation of CO and H2 (relevant to this work) with the assumption that exchange current density for CO oxidation is 0.4 times the H2 oxidation without validation and the diffusion through the thickness was significantly simplified. Further progress can be made in several areas to increase the utility of ROMs, particularly for hydrocarbon or syngas fuels. First, additional experimental validation is needed to further demonstrate the usefulness of ROMs. Second, ROMs can be extended to explore the competition between direct electrochemical oxidation of fuel and indirect oxidation of fuels through chemical conversion to form hydrogen. This second issue is of particular interest in practical systems where the relative importance of internal reforming or water-gas-shift reactions can vary through the stack. In this paper, we address these issues by developing a ROM for anode-supported SOFCs. We begin with a derivation of the ROM, and validate it using experimental data from the literature. We then explore the impact of syngas composition and temperature on the relative importance of direct and indirect oxidation modes. This paper is the first of a series of papers, aiming to lay the ground for systematically investigating the effects of pressure, temperature-field coupling and flow patterns on the performance of commercial-size planar SOFC stacks operated on syngas fuel

    Measuring Quantum Entanglement from Local Information by Machine Learning

    Full text link
    Entanglement is a key property in the development of quantum technologies and in the study of quantum many-body simulations. However, entanglement measurement typically requires quantum full-state tomography (FST). Here we present a neural network-assisted protocol for measuring entanglement in equilibrium and non-equilibrium states of local Hamiltonians. Instead of FST, it can learn comprehensive entanglement quantities from single-qubit or two-qubit Pauli measurements, such as R\'enyi entropy, partially-transposed (PT) moments, and coherence. It is also exciting that our neural network is able to learn the future entanglement dynamics using only single-qubit traces from the previous time. In addition, we perform experiments using a nuclear spin quantum processor and train an adoptive neural network to study entanglement in the ground and dynamical states of a one-dimensional spin chain. Quantum phase transitions (QPT) are revealed by measuring static entanglement in ground states, and the entanglement dynamics beyond measurement time is accurately estimated in dynamical states. These precise results validate our neural network. Our work will have a wide range of applications in quantum many-body systems, from quantum phase transitions to intriguing non-equilibrium phenomena such as quantum thermalization.Comment: 5 pages, 4 figures. All comments are welcom

    Changes and significance of TLR7/9 and IFN-â…  levels in children with severe mycoplasma pneumoniae pneumonia

    Get PDF
    Objective To investigate the changes and significance of Toll-like receptor 7 (TLR7), TLR9 and type I interferon (IFN-Ⅰ) in children with severe mycoplasma pneumoniae pneumonia (SMPP). Methods 80 children with mycoplasma pneumoniae pneumonia (MPP) were divided into the non-severe MPP (MPP group) and SMPP groups (SMPP group). 26 healthy children who underwent outpatient physical examination were chosen as the control group. Serum samples in each group were collected. In the SMPP group, bronchoalveolar lavage fluid (BALF) on the affected and contralateral sides of 26 children with unilateral lung consolidation, atelectasis, lung abscess or lung tissue necrosis on imaging examination were collected. The levels of TLR7, TLR9, myeloid differentiation factor 88 (MyD88), interferon-α (IFN-α) and IFN-β in the serum and BALF samples were determined by enzyme-linked immunosorbent assay (ELISA). Results The serum levels of TLR7, TLR9, MyD88, IFN-α and IFN-β in the SMPP and MPP groups were significantly higher than those in the control group, and the levels of all cytokines in the SMPP group were significantly higher compared with those in the MPP group (all P < 0.05). The levels of TLR7, TLR9, MyD88, IFN-α and IFN-β in the BALF on the affected side were significantly higher than those on the contralateral side (all P < 0.01). The area under the receiver operating characteristic curve (AUC) of serum TLR7 and MyD88 levels for predicting SMPP was 0.709 and 0.723. Conclusions Over-induced and generated TLR7, TLR9, IFN-α and IFN-β may be pathogenic factors for the incidence of SMPP and severe local lung tissue injury in children with SMPP. TLR7 and MyD88 can be used as predictors of SMPP to guide clinical treatment

    Effect of Salt Stress on Growth, Physiological Parameters, and Ionic Concentration of Water Dropwort (Oenanthe javanica) Cultivars

    Get PDF
    Salt stress is an important environmental limiting factor. Water dropwort (Oenanthe javanica) is an important vegetable in East Asia; however, its phenotypic and physiological response is poorly explored. For this purpose, 48 cultivars of water dropwort were grown hydroponically and treated with 0, 50, 100, and 200 mm NaCl for 14 days. Than their phenotypic responses were evaluated, afterward, physiological studies were carried out in selected sensitive and tolerant cultivars. In the present study, the potential tolerant (V11E0022) and sensitive (V11E0135) cultivars were selected by screening 48 cultivars based on their phenotype under four different levels of salt concentrations (0, 50, 100, and 200 mm). The results depicted that plant height, number of branches and leaves were less effected in V11E0022, and most severe reduction was observed in V11E0135 in comparison with others. Than the changes in biomass, ion contents, accumulation of reactive oxygen species, and activities of antioxidant enzymes and non-enzymatic antioxidants were determined in the leaves and roots of the selected cultivars. The potential tolerant cultivar (V11E0022) showed less reduction of water content and demonstrated low levels of Na+ uptake, malondialdehyde, and hydrogen peroxide (H2O2) in both leaves and roots. Moreover, the tolerant cultivar (V11E0022) showed high antioxidant activities of ascorbate peroxidase (APX), superoxide dismutase, peroxidase, catalase (CAT), reduced glutathione (GSH), and high accumulation of proline and soluble sugars compared to the sensitive cultivar (V11E0135). These results suggest the potential tolerance of V11E0022 cultivar against salt stress with low detrimental effects and a good antioxidant defense system. The observations also suggest good antioxidant capacity of water dropwort against salt stress. The findings of the present study also suggest that the number of branches and leaves, GSH, proline, soluble sugars, APX, and CAT could serve as the efficient markers for understanding the defense mechanisms of water dropwort under the conditions of salt stress

    Pretreatment Donors after Circulatory Death with Simvastatin Alleviates Liver Ischemia Reperfusion Injury through a KLF2-Dependent Mechanism in Rat

    Get PDF
    Objective. Severe hepatic ischemia reperfusion injury (IRI) can result in poor short- and long-term graft outcome after transplantation. The way to improve the viability of livers from donors after circulatory death (DCD) is currently limited. The aim of the present study was to explore the protective effect of simvastatin on DCD livers and investigate the underlying mechanism. Methods. 24 male rats randomly received simvastatin or its vehicle. 30 min later, rat livers were exposed to warm ischemia in situ for 30 min. Livers were removed and cold-stored in UW solution for 24 h, subsequently reperfused for 60 min with an isolated perfused rat liver system. Liver injury was evaluated during and after warm reperfusion. Results. Pretreatment of DCD donors with simvastatin significantly decreased IRI liver enzyme release, increased bile output and ATP, and ameliorated hepatic pathological changes. Simvastatin maintained the expression of KLF2 and its protective target genes (eNOS, TM, and HO-1), reduced oxidative stress, inhibited innate immune responses and inflammation, and increased the expression of Bcl-2/Bax to suppress hepatocyte apoptosis compared to DCD control group. Conclusion. Pretreatment of DCD donors with simvastatin improves DCD livers’ functional recovery probably through a KLF2-dependent mechanism. These data suggest that simvastatin may provide a potential benefit for clinical DCD liver transplantation

    Multidimensional Single Cell Based STAT Phosphorylation Profiling Identifies a Novel Biosignature for Evaluation of Systemic Lupus Erythematosus Activity

    Get PDF
    INTRODUCTION: Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE), a complex autoimmune disease. Comprehensively quantifying basal STATs phosphorylation and their signaling response to cytokines should help us to better understand the etiology of SLE. METHODS: Phospho-specific flow cytometry was used to measure the basal STAT signaling activation in three immune cell types of peripheral-blood mononuclear cells from 20 lupus patients, 9 rheumatoid arthritis (RA) patients and 13 healthy donors (HDs). A panel of 27 cytokines, including inflammatory cytokines, was measured with Bio-Plex™ Human Cytokine Assays. Serum Prolactin levels were measured with an immunoradiometric assay. STAT signaling responses to inflammatory cytokines (interferon α [IFNα], IFNγ, interleukin 2 [IL2], IL6, and IL10) were also monitored. RESULTS: We observed the basal activation of STAT3 in SLE T cells and monocytes, and the basal activation of STAT5 in SLE T cells and B cells. The SLE samples clustered into two main groups, which were associated with the SLE Disease Activity Index 2000, their erythrocyte sedimentation rate, and their hydroxychloroquine use. The phosphorylation of STAT5 in B cells was associated with cytokines IL2, granulocyte colony-stimulating factor (G-CSF), and IFNγ, whereas serum prolactin affected STAT5 activation in T cells. The responses of STAT1, STAT3, and STAT5 to IFNα were greatly reduced in SLE T cells, B cells, and monocytes, except for the STAT1 response to IFNα in monocytes. The response of STAT3 to IL6 was reduced in SLE T cells. CONCLUSIONS: The basal activation of STATs signaling and reduced response to cytokines may be helpful us to identify the activity and severity of SLE

    Manufacturing of Micro-Lens Array Using Contactless Micro-Embossing with an EDM-Mold

    No full text
    Micro embossing is an effective way to fabricate a polymethyl methacrylate (PMMA) specimen into micro-scale array structures with low cost and large volume production. A new method was proposed to fabricate a micro-lens array using a micro-electrical discharge machining (micro-EDM) mold. The micro-lens array with different shapes was established by controlling the processing parameters, including embossing temperature, embossing force, and holding time. In order to obtain the friction coefficient between the PMMA and the mold, ring compression tests were conducted on the Shenzhen University’s precision glass molding machine (SZU’s PGMM30). It was found that the friction coefficient between the PMMA specimen and the mold had an interesting change process with increasing of temperature, which affected the final shape and stress distribution of the compressed PMMA parts. The results of micro-optical imaging of micro-lens array indicated that the radius of curvature and local length could be controlled by adjusting the processing parameters. This method provides a basis for the fabrication and application of micro-lens arrays with low-cost, high efficiency, and mass production
    • …
    corecore