2,124 research outputs found
Learning Social Image Embedding with Deep Multimodal Attention Networks
Learning social media data embedding by deep models has attracted extensive
research interest as well as boomed a lot of applications, such as link
prediction, classification, and cross-modal search. However, for social images
which contain both link information and multimodal contents (e.g., text
description, and visual content), simply employing the embedding learnt from
network structure or data content results in sub-optimal social image
representation. In this paper, we propose a novel social image embedding
approach called Deep Multimodal Attention Networks (DMAN), which employs a deep
model to jointly embed multimodal contents and link information. Specifically,
to effectively capture the correlations between multimodal contents, we propose
a multimodal attention network to encode the fine-granularity relation between
image regions and textual words. To leverage the network structure for
embedding learning, a novel Siamese-Triplet neural network is proposed to model
the links among images. With the joint deep model, the learnt embedding can
capture both the multimodal contents and the nonlinear network information.
Extensive experiments are conducted to investigate the effectiveness of our
approach in the applications of multi-label classification and cross-modal
search. Compared to state-of-the-art image embeddings, our proposed DMAN
achieves significant improvement in the tasks of multi-label classification and
cross-modal search
Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer
Amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) having an ultra-thin nitrogenated a-IGZO (a-IGZO:N) layer sandwiched at the channel/gate dielectric interface are fabricated. It is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies within the a-IGZO:N layer is suppressed due to the formation of N-Ga bonds. Meanwhile, low frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops as the nitrogen content within the a-IGZO:N layer increases. The improved interface quality upon nitrogen doping agrees with the enhanced bias stress stability of the a-IGZO TFTs.This work was supported in part by the State Key
Program for Basic Research of China under Grant Nos.
2010CB327504, 2011CB922100, and 2011CB301900; in
part by the National Natural Science Foundation of China
under Grant Nos. 60936004 and 11104130; in part by the
Natural Science Foundation of Jiangsu Province under Grant
Nos. BK2011556 and BK2011050; and in part by the
Priority Academic Program Development of Jiangsu Higher
Education Institutions
Facilitating Technology Transfer by Patent Knowledge Graph
Technologies are one of the most important driving forces of our societal development and realizing the value of technologies heavily depends on the transfer of technologies. Given the importance of technologies and technology transfer, an increasingly large amount of money has been invested to encourage technological innovation and technology transfer worldwide. However, while numerous innovative technologies are invented, most of them remain latent and un-transferred. The comprehension of technical documents and the identification of appropriate technologies for given needs are challenging problems in technology transfer due to information asymmetry and information overload problems. There is a lack of common knowledge base that can reveal the technical details of technical documents and assist with the identification of suitable technologies. To bridge this gap, this research proposes to construct knowledge graph for facilitating technology transfer. A case study is conducted to show the construction of a patent knowledge graph and to illustrate its benefit to finding relevant patents, the most common and important form of technologies
- …