958 research outputs found

    Effects Of Process Variants On Metallurgical And Mechanical Properties In Friction Stir Welding Of Aluminum Alloys

    Get PDF
    Conventional shoulder friction stir welding (CSFSW) produces uneven heat input through welded material thickness: higher close to the top and lower close to the bottom. When CSFSW is applied on certain aluminum alloys, such as 7xxx and 2xxx series high strength aluminum alloys which contain low melting point intermetallic, overheating and local melting may happen close to weld crown. Stationary shoulder friction stir welding (SSFSW) may generate much more uniform heat input through plate thickness than CSFSW due to the non-rotating shoulder and rotating pin. Therefore, overheating and local melting are expected to be avoided in SSFSW. Furthermore, local properties of joint made by SSFSW should be more uniform through its thickness than those of joint made by CSFSW. In this study, thermal management was mainly approached by applying a rotating shoulder tool (CSFSW) and a stationary shoulder tool (SSFSW) in FSW. Beside the thermal management implemented by the shoulder, single pass (SP) FSW, dual-pass (DP) FSW, various pin features such as flats and flutes, have also been introduced in this investigation to achieve different thermal distribution. A series of 24.9 mm and 25.4 mm thick AA7099-T7651, 32 mm thick AA7050-T7451 and 25.4 mm thick AA6061-T651 aluminum alloy plates have been friction stir welded using four different process variants. The process variants used are: stationary shoulder single pass (SSSP), conventional shoulder single pass (CSSP), stationary shoulder dual pass (SSDP), and conventional shoulder dual pass (CSDP). FSW parameters, such as speeds, forces, temperatures, torques, powers and grain size, have been recorded, calculated and analyzed. Welding quality, material flow and deformation, as well as microstructure have been examined by various metallographic means. Mechanical examinations have been adopted to test mechanical properties of joints made with CSFSW and SSFSW. The TPM model implemented in COMSOL MULTIPHYSICS 4.0/4.4 has also been adopted in this research to simulate thermal distributions in FSW process when different process variants are applied. Goals of this study include further understanding CSFSW and SSFSW mechanical, thermal and metallurgical processes, producing high quality thick plate SSFSW joint on 7xxx aluminum alloys, as well as investigating the influences of thermal management, pin features, process control parameters and different process variants in process response parameters, achievable welding speeds, thermal distribution and history in welded joint metallurgical and mechanical properties

    Research methods on the role of financial inclusion, energy efficiency and energy R&D: Evidence from G7 economies

    Get PDF
    Countries around the globe are rapidly targeting energy efficiency goal achievement due to the unproductive and inefficient use of traditional energy sources. Several factors are discovered that are critical for energy efficiency in the region. Still, there are many economic, financial, energy, and research and development factors that could influence energy efficiency and remained ignored in the scholarly research, which is important from economic growth as well as environmental sustainability perspective. This research contributes to the existing literature by providing novel factors affecting energy efficiency in the developed nations. Specifically, the current study investigates the influence of financial inclusion, energy R&D, political- economic-financial risk index, and the energy-related inflation on the energy efficiency of G7 economies covering the period from 2004 to 2020. This study employed the slope heterogeneity and cross-section dependence test, which led to using the second-generation unit root test. For empirical estimations, the current study utilizes the panel Quantile regression, and the outcomes reveal that all the considered variables positively influence the energy efficiency in the region. However, the influence of these variables increases except for the energy-related inflation when moving from lower quantile Q0.25 to medium Q0.50 to higher quantile Q0.75, respectively. The estimated results are found robust, confirmed by the FMOLS estimator. Based on the empirical findings, it is recommended that financial inclusion and energy-related research and development be enhanced to achieve the region’s energy efficiency

    Mechanical Self-Assembly of a Strain-Engineered Flexible Layer: Wrinkling, Rolling, and Twisting

    Get PDF
    Self-shaping of curved structures, especially those involving flexible thin layers, has attracted increasing attention because of their broad potential applications in e.g. nanoelectromechanical/micro-electromechanical systems (NEMS/MEMS), sensors, artificial skins, stretchable electronics, robotics, and drug delivery. Here, we provide an overview of recent experimental, theoretical, and computational studies on the mechanical self-assembly of strain-engineered thin layers, with an emphasis on systems in which the competition between bending and stretchingenergy gives rise to a variety ofdeformations,such as wrinkling, rolling, and twisting. We address the principle of mechanical instabilities, which is often manifested in wrinkling or multistability of strain-engineered thin layers. The principles of shape selection and transition in helical ribbons are also systematically examined. We hope that a more comprehensive understanding of the mechanical principles underlying these rich phenomena can foster the development of new techniques for manufacturing functional three- dimensional structures on demand for a broad spectrum of engineering applications.Comment: 91 pages, 35 figures, review articl

    Contributions of photosynthetic organs to the seed yield of hybrid rice: The effects of gibberellin application examined by carbon isotope technology

    Get PDF
    The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Contributions of photosynthetic organs to the seed yield of hybrid rice: The effects of gibberellin application examined by carbon isotope technology. Seed Science and Technology, 46(3), (2018): 533-546, doi:10.15258/sst.2018.46.3.10.Changes in the structure and quality of a hybrid combination population have been observed after the application of gibberellins. Such changes would affect the accumulation and distribution of photosynthetic products, which would subsequently affect the yield during hybrid rice seed production. In this study, photosynthetic physiological characteristics and the distribution of photosynthetic products were evaluated in a field experiment. The transport of panicle photosynthetic products to grain was demonstrated using a 14C isotope tracer technique.The contribution ratios of the panicle and leaf to yield in the hybrid rice seed production were 32.3 and 42.1%, respectively. Through isotope tracing technology, it was determined that about 90% of the photosynthetic products of the panicle and 50% of those of the leaf were delivered to the panicle. During the filling period, the contribution of panicle to yield was concentrated in the early period (0–10 days after pollination), and the contribution of leaf to yield was more significant in the late period (10 days after pollination to maturity). These results suggest that the panicle makes an important photosynthetic contribution (equivalent to that of the flag leaf) during the process of grain filling, especially at 0–5 days after the heading stage.We are thankful to anonymous reviewers and editors for their helpful comments and suggestions. This research was part of the project for the National Natural Science Foundation of China (No. 31271666), “12th 5-year plan” Agro-Scientific Research in the Public Interest (Grant No. 201303002) and the Earmarked Fund for China Agriculture Research System (Grant No. CARS-01-26)

    What a Whole Slide Image Can Tell? Subtype-guided Masked Transformer for Pathological Image Captioning

    Full text link
    Pathological captioning of Whole Slide Images (WSIs), though is essential in computer-aided pathological diagnosis, has rarely been studied due to the limitations in datasets and model training efficacy. In this paper, we propose a new paradigm Subtype-guided Masked Transformer (SGMT) for pathological captioning based on Transformers, which treats a WSI as a sequence of sparse patches and generates an overall caption sentence from the sequence. An accompanying subtype prediction is introduced into SGMT to guide the training process and enhance the captioning accuracy. We also present an Asymmetric Masked Mechansim approach to tackle the large size constraint of pathological image captioning, where the numbers of sequencing patches in SGMT are sampled differently in the training and inferring phases, respectively. Experiments on the PatchGastricADC22 dataset demonstrate that our approach effectively adapts to the task with a transformer-based model and achieves superior performance than traditional RNN-based methods. Our codes are to be made available for further research and development

    Efficacy and Safety of Clearing Heat and Detoxifying Injection in the Treatment of Influenza: A Randomized, Double-Blinded, Placebo-Controlled Trial

    Get PDF
    Objective. To evaluate the efficacy and safety of CHDI in the treatment of influenza infection. Method. A randomized double-blind, double dummy trial was conducted. Influenza patients with a positive influenza A rapid test diagnosis were randomized to receive CHDI or oseltamivir. Primary outcome was assessed by the median fever alleviation time and clearance time, and secondary outcome was total scores of influenza symptoms. Results. One hundred thirty-nine participants were screened and 34 had a RT-PCR laboratory confirmation of influenza virus infection. Fever alleviation time was 2.5 and 5 hours in CHDI and oseltamivir, respectively, and fever clearance time was 32.5 and 49 hours. The HR of fever alleviation and clearance time shows no significant difference between two groups. Total scores of influenza symptoms descended significantly in both groups after treatment and descended more in CHDI than oseltamivir on day 2. Similar to total symptoms severity score, fever severity score descend more significantly in CHDI than oseltamivir on day 2, and there were no differences on other symptoms. Conclusions. CHDI have a similar effect to oseltamivir in reducing the duration of influenza illness. CHDI was well tolerated, with no serious adverse events noted during the study period

    Modeling Multi-wavelength Pulse Profiles of Millisecond Pulsar PSR B1821-24

    Full text link
    PSR B1821-24 is a solitary millisecond pulsar (MSP) which radiates multi-wavelength pulsed photons. It has complex radio, X-ray and γ\gamma-ray pulse profiles with distinct peak phase-separations that challenge the traditional caustic emission models. Using the single-pole annular gap model with suitable magnetic inclination angle (α=40\alpha=40^\circ) and viewing angle (ζ=75\zeta=75^\circ), we managed to reproduce its pulse profiles of three wavebands. It is found that the middle radio peak is originated from the core gap region at high altitudes, and the other two radio peaks are originated from the annular gap region at relatively low altitudes. Two peaks of both X-ray and γ\gamma-ray wavebands are fundamentally originated from annular gap region, while the γ\gamma-ray emission generated from the core gap region contributes somewhat to the first γ\gamma-ray peak. Precisely reproducing the multi-wavelength pulse profiles of PSR B1821-24 enables us to understand emission regions of distinct wavebands and justify pulsar emission models.Comment: Accepted for publication in Ap
    corecore