83,801 research outputs found
Robust Detection of Moving Human Target in Foliage-Penetration Environment Based on Hough Transform
Attention has been focused on the robust moving human target detection in foliage-penetration environment, which presents a formidable task in a radar system because foliage is a rich scattering environment with complex multipath propagation and time-varying clutter. Generally, multiple-bounce returns and clutter are additionally superposed to direct-scatter echoes. They obscure true target echo and lead to poor visual quality time-range image, making target detection particular difficult. Consequently, an innovative approach is proposed to suppress clutter and mitigate multipath effects. In particular, a clutter suppression technique based on range alignment is firstly applied to suppress the time-varying clutter and the instable antenna coupling. Then entropy weighted coherent integration (EWCI) algorithm is adopted to mitigate the multipath effects. In consequence, the proposed method effectively reduces the clutter and ghosting artifacts considerably. Based on the high visual quality image, the target trajectory is detected robustly and the radial velocity is estimated accurately with the Hough transform (HT). Real data used in the experimental results are provided to verify the proposed method
On the CR transversality of holomorphic maps into hyperquadrics
Let be a smooth Levi-nondegenerate hypersurface of signature
in with , and write for the standard
hyperquadric of the same signature in with .
Let be a holomorphic map sending into . Assume does
not send a neighborhood of in into . We show
that is necessarily CR transversal to at any point. Equivalently,
we show that is a local CR embedding from into .Comment: To appear in Abel Symposia, dedicated to Professor Yum-Tong Siu on
the occasion of his 70th birthda
Engineering the accurate distortion of an object's temperature-distribution signature
It is up to now a challenge to control the conduction of heat. Here we
develop a method to distort the temperature distribution signature of an object
at will. As a result, the object accurately exhibits the same temperature
distribution signature as another object that is predetermined, but actually
does not exist in the system. Our finite element simulations confirm the
desired effect for different objects with various geometries and compositions.
The underlying mechanism lies in the effects of thermal metamaterials designed
by using this method. Our work is of value for applications in thermal
engineering.Comment: 11 pages, 4 figure
The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics
We consider the class of Levi nondegenerate hypersurfaces in \bC^{n+1}
that admit a local (CR transversal) embedding, near a point , into a
standard nondegenerate hyperquadric in with codimension
small compared to the CR dimension of . We show that, for hypersurfaces
in this class, there is a normal form (which is closely related to the
embedding) such that any local equivalence between two hypersurfaces in normal
form must be an automorphism of the associated tangent hyperquadric. We also
show that if the signature of and that of the standard hyperquadric in
\bC^{N+1} are the same, then the embedding is rigid in the sense that any
other embedding must be the original embedding composed with an automorphism of
the quadric
Super-rigidity for CR embeddings of real hypersurfaces into hyperquadrics
Let Q^N_l\subset \bC\bP^{N+1} denote the standard real, nondegenerate
hyperquadric of signature and M\subset \bC^{n+1} a real, Levi
nondegenerate hypersurface of the same signature . We shall assume that
there is a holomorphic mapping H_0\colon U\to \bC\bP^{N_0+1}, where is
some neighborhood of in \bC^{n+1}, such that
but . We show that if then, for any , any holomorphic mapping H\colon U\to \bC\bP^{N+1} with and must be the standard linear embedding
of into up to conjugation by automorphisms of
and
CRLBs for Pilot-Aided Channel Estimation in OFDM System under Gaussian and Non-Gaussian Mixed Noise
The determination of Cramer-Rao lower bound (CRLB) as an optimality criterion for the problem of channel estimation in wireless communication is a very important issue. Several CRLBs on channel estimation have been derived for Gaussian noise. However, a practical channel is affected by not only Gaussian background noise but also non-Gaussian noise such as impulsive interference. This paper derives the deterministic and stochastic CRLBs for Gaussian and non-Gaussian mixed noise. Due to the use of the non-parametric kernel method to build the PDF of non-Gaussian noise, the proposed CRLBs are suitable for practical channel environments with various noise distributions
Investigation of a novel elastic-mechanical wheel transmission under light duty conditions
A novel 'Elastic Engagement and Friction Coupled' (EEFC) mechanical transmission has been proposed recently in which the power is transmitted through elastic tines on the surfaces of the driving and driven wheels. This study introduces new variations of EEFC mechanical wheel transmission ( broadly emulating a gear-pair) with small contact areas for use under light duty conditions. Because a drive of this type inevitably has a strong statistical component, theoretical analysis of the geometrical and mechanical relationships has been attempted by using linear modeling and empirical weightings. Several simple forms of the EEFC wheel transmission are tested under limiting ( slip) conditions for transmission force and transmission coefficients against normal load. Normalized standard deviation of these parameters is used to summarize noise performance. Models and experiments are in reasonable agreement, suggesting that the model parameters reflect important design considerations. EEFC transmissions appear well suited to force regimes of a few tenths of a newton and to have potential for use in, for example, millimetre-scale robots
Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors
The superconducting gap is the fundamental parameter that characterizes the
superconducting state, and its symmetry is a direct consequence of the
mechanism responsible for Cooper pairing. Here we discuss about angle-resolved
photoemission spectroscopy measurements of the superconducting gap in the
Fe-based high-temperature superconductors. We show that the superconducting gap
is Fermi surface dependent and nodeless with small anisotropy, or more
precisely, a function of momentum. We show that while this observation is
inconsistent with weak coupling approaches for superconductivity in these
materials, it is well supported by strong coupling models and global
superconducting gaps. We also suggest that the strong anisotropies measured by
other probes sensitive to the residual density of states are not related to the
pairing interaction itself, but rather emerge naturally from the smaller
lifetime of the superconducting Cooper pairs that is a direct consequence of
the momentum dependent interband scattering inherent to these materials.Comment: 7 pages, 5 figure
Quantum Brayton cycle with coupled systems as working substance
We explore the quantum version of Brayton cycle with a composite system as
the working substance. The actual Brayton cycle consists of two adiabatic and
two isobaric processes. Two pressures can be defined in our isobaric process,
one corresponds to the external magnetic field (characterized by ) exerted
on the system, while the other corresponds to the coupling constant between the
subsystems (characterized by ). As a consequence, we can define two types
of quantum Brayton cycle for the composite system. We find that the subsystem
experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized
by ), whereas the subsystem's cycle is of quantum Otto in another Brayton
cycle (characterized by ). The efficiency for the composite system equals
to that for the subsystem in both cases, but the work done by the total system
are usually larger than the sum of work done by the two subsystems. The other
interesting finding is that for the cycle characterized by , the subsystem
can be a refrigerator while the total system is a heat engine. The result in
the paper can be generalized to a quantum Brayton cycle with a general coupled
system as the working substance.Comment: 7 pages, 3 figures, accepted by Phys. Rev.
- …