104 research outputs found

    How Democracies Polarize: A Multilevel Perspective

    Full text link
    Democracies employ elections at various scales to select officials at the corresponding levels of administration. The geographical distribution of political opinion, the policy issues delegated to each level, and the multilevel interactions between elections can all greatly impact the makeup of these representative bodies. This perspective is not new: the adoption of federal systems has been motivated by the idea that they possess desirable traits not provided by democracies on a single scale. Yet most existing models of polarization do not capture how nested local and national elections interact with heterogeneous political geographies. We begin by developing a framework to describe the multilevel distribution of opinions and analyze the flow of variance among geographic scales, applying it to historical data in the United States from 1912 to 2020. We describe how unstable elections can arise due to the spatial distribution of opinions and how tradeoffs occur between national and local elections. We also examine multi-dimensional spaces of political opinion, for which we show that a decrease in local salience can constrain the dimensions along which elections occur, preventing a federal system from serving as an effective safeguard against polarization. These analyses, based on the interactions between elections and opinion distributions at various scales, offer insights into how democracies can be strengthened to mitigate polarization and increase electoral representation.Comment: 20 pages, 6 figure

    AI-Assisted Discovery of Quantitative and Formal Models in Social Science

    Full text link
    In social science, formal and quantitative models, such as ones describing economic growth and collective action, are used to formulate mechanistic explanations, provide predictions, and uncover questions about observed phenomena. Here, we demonstrate the use of a machine learning system to aid the discovery of symbolic models that capture nonlinear and dynamical relationships in social science datasets. By extending neuro-symbolic methods to find compact functions and differential equations in noisy and longitudinal data, we show that our system can be used to discover interpretable models from real-world data in economics and sociology. Augmenting existing workflows with symbolic regression can help uncover novel relationships and explore counterfactual models during the scientific process. We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research by systematically exploring the space of nonlinear models and enabling fine-grained control over expressivity and interpretability.Comment: 19 pages, 4 figure

    A Survey on Large Language Model-Based Game Agents

    Full text link
    The development of game agents holds a critical role in advancing towards Artificial General Intelligence (AGI). The progress of LLMs and their multimodal counterparts (MLLMs) offers an unprecedented opportunity to evolve and empower game agents with human-like decision-making capabilities in complex computer game environments. This paper provides a comprehensive overview of LLM-based game agents from a holistic viewpoint. First, we introduce the conceptual architecture of LLM-based game agents, centered around six essential functional components: perception, memory, thinking, role-playing, action, and learning. Second, we survey existing representative LLM-based game agents documented in the literature with respect to methodologies and adaptation agility across six genres of games, including adventure, communication, competition, cooperation, simulation, and crafting & exploration games. Finally, we present an outlook of future research and development directions in this burgeoning field. A curated list of relevant papers is maintained and made accessible at: https://github.com/git-disl/awesome-LLM-game-agent-papers

    ReRoGCRL: Representation-based Robustness in Goal-Conditioned Reinforcement Learning

    Full text link
    While Goal-Conditioned Reinforcement Learning (GCRL) has gained attention, its algorithmic robustness against adversarial perturbations remains unexplored. The attacks and robust representation training methods that are designed for traditional RL become less effective when applied to GCRL. To address this challenge, we first propose the Semi-Contrastive Representation attack, a novel approach inspired by the adversarial contrastive attack. Unlike existing attacks in RL, it only necessitates information from the policy function and can be seamlessly implemented during deployment. Then, to mitigate the vulnerability of existing GCRL algorithms, we introduce Adversarial Representation Tactics, which combines Semi-Contrastive Adversarial Augmentation with Sensitivity-Aware Regularizer to improve the adversarial robustness of the underlying RL agent against various types of perturbations. Extensive experiments validate the superior performance of our attack and defence methods across multiple state-of-the-art GCRL algorithms. Our tool ReRoGCRL is available at https://github.com/TrustAI/ReRoGCRL.Comment: This paper has been accepted in AAAI24 (https://aaai.org/aaai-conference/

    Adaptive Deep Neural Network Inference Optimization with EENet

    Full text link
    Well-trained deep neural networks (DNNs) treat all test samples equally during prediction. Adaptive DNN inference with early exiting leverages the observation that some test examples can be easier to predict than others. This paper presents EENet, a novel early-exiting scheduling framework for multi-exit DNN models. Instead of having every sample go through all DNN layers during prediction, EENet learns an early exit scheduler, which can intelligently terminate the inference earlier for certain predictions, which the model has high confidence of early exit. As opposed to previous early-exiting solutions with heuristics-based methods, our EENet framework optimizes an early-exiting policy to maximize model accuracy while satisfying the given per-sample average inference budget. Extensive experiments are conducted on four computer vision datasets (CIFAR-10, CIFAR-100, ImageNet, Cityscapes) and two NLP datasets (SST-2, AgNews). The results demonstrate that the adaptive inference by EENet can outperform the representative existing early exit techniques. We also perform a detailed visualization analysis of the comparison results to interpret the benefits of EENet

    Phase transitions associated with magnetic-field induced topological orbital momenta in a non-collinear antiferromagnet

    Full text link
    Resistivity measurements are widely exploited to uncover electronic excitations and phase transitions in metallic solids. While single crystals are preferably studied to explore crystalline anisotropies, these usually cancel out in polycrystalline materials. Here we show that in polycrystalline Mn3Zn0.5Ge0.5N with non-collinear antiferromagnetic order, changes in the diagonal and, rather unexpected, off-diagonal components of the resistivity tensor occur at low temperatures indicating subtle transitions between magnetic phases of different symmetry. This is supported by neutron scattering and explained within a phenomenological model which suggests that the phase transitions in magnetic field are associated with field induced topological orbital momenta. The fact that we observe transitions between spin phases in a polycrystal, where effects of crystalline anisotropy are cancelled suggests that they are only controlled by exchange interactions. The observation of an off-diagonal resistivity extends the possibilities for realising antiferromagnetic spintronics with polycrystalline materials.Comment: 4 figures, 1 tabl

    Microwave Package Design for Superconducting Quantum Processors

    Full text link
    Solid-state qubits with transition frequencies in the microwave regime, such as superconducting qubits, are at the forefront of quantum information processing. However, high-fidelity, simultaneous control of superconducting qubits at even a moderate scale remains a challenge, partly due to the complexities of packaging these devices. Here, we present an approach to microwave package design focusing on material choices, signal line engineering, and spurious mode suppression. We describe design guidelines validated using simulations and measurements used to develop a 24-port microwave package. Analyzing the qubit environment reveals no spurious modes up to 11GHz. The material and geometric design choices enable the package to support qubits with lifetimes exceeding 350 {\mu}s. The microwave package design guidelines presented here address many issues relevant for near-term quantum processors.Comment: 15 pages, 9 figure
    corecore