267 research outputs found

    Examining Teaching Charisma and Its Relation to Student Engagement

    Get PDF
    This study focuses on the factor of teaching charisma which comprises four key constructs: knowledge, character traits, teaching techniques, and humor. Participants were collected from 17 regular education classrooms within 6 colleges or universities in central Taiwan. The results revealed that the Inventory of Teaching Charisma in the College Classroom (ITCCC) is a psychometrically valid instrument which can accurately assess students’ perceptions of the quality of a teacher’s teaching in a professional course. Furthermore, a strong positive relationship between teacher’s charisma and student engagement was found and three factors of the teaching charisma can jointly predict student engagement in the professional subject. The importance of the teacher’s charisma in enhancing student engagement is confirmed

    General Greedy De-bias Learning

    Full text link
    Neural networks often make predictions relying on the spurious correlations from the datasets rather than the intrinsic properties of the task of interest, facing sharp degradation on out-of-distribution (OOD) test data. Existing de-bias learning frameworks try to capture specific dataset bias by annotations but they fail to handle complicated OOD scenarios. Others implicitly identify the dataset bias by special design low capability biased models or losses, but they degrade when the training and testing data are from the same distribution. In this paper, we propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model. The base model is encouraged to focus on examples that are hard to solve with biased models, thus remaining robust against spurious correlations in the test stage. GGD largely improves models' OOD generalization ability on various tasks, but sometimes over-estimates the bias level and degrades on the in-distribution test. We further re-analyze the ensemble process of GGD and introduce the Curriculum Regularization inspired by curriculum learning, which achieves a good trade-off between in-distribution and out-of-distribution performance. Extensive experiments on image classification, adversarial question answering, and visual question answering demonstrate the effectiveness of our method. GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.Comment: This work has been submitted to IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    ALID: Scalable Dominant Cluster Detection

    Full text link
    Detecting dominant clusters is important in many analytic applications. The state-of-the-art methods find dense subgraphs on the affinity graph as the dominant clusters. However, the time and space complexity of those methods are dominated by the construction of the affinity graph, which is quadratic with respect to the number of data points, and thus impractical on large data sets. To tackle the challenge, in this paper, we apply Evolutionary Game Theory (EGT) and develop a scalable algorithm, Approximate Localized Infection Immunization Dynamics (ALID). The major idea is to perform Localized Infection Immunization Dynamics (LID) to find dense subgraph within local range of the affinity graph. LID is further scaled up with guaranteed high efficiency and detection quality by an estimated Region of Interest (ROI) and a carefully designed Candidate Infective Vertex Search method (CIVS). ALID only constructs small local affinity graphs and has a time complexity of O(C(a^*+ {\delta})n) and a space complexity of O(a^*(a^*+ {\delta})), where a^* is the size of the largest dominant cluster and C << n and {\delta} << n are small constants. We demonstrate by extensive experiments on both synthetic data and real world data that ALID achieves state-of-the-art detection quality with much lower time and space cost on single machine. We also demonstrate the encouraging parallelization performance of ALID by implementing the Parallel ALID (PALID) on Apache Spark. PALID processes 50 million SIFT data points in 2.29 hours, achieving a speedup ratio of 7.51 with 8 executors

    R&B: Region and Boundary Aware Zero-shot Grounded Text-to-image Generation

    Full text link
    Recent text-to-image (T2I) diffusion models have achieved remarkable progress in generating high-quality images given text-prompts as input. However, these models fail to convey appropriate spatial composition specified by a layout instruction. In this work, we probe into zero-shot grounded T2I generation with diffusion models, that is, generating images corresponding to the input layout information without training auxiliary modules or finetuning diffusion models. We propose a Region and Boundary (R&B) aware cross-attention guidance approach that gradually modulates the attention maps of diffusion model during generative process, and assists the model to synthesize images (1) with high fidelity, (2) highly compatible with textual input, and (3) interpreting layout instructions accurately. Specifically, we leverage the discrete sampling to bridge the gap between consecutive attention maps and discrete layout constraints, and design a region-aware loss to refine the generative layout during diffusion process. We further propose a boundary-aware loss to strengthen object discriminability within the corresponding regions. Experimental results show that our method outperforms existing state-of-the-art zero-shot grounded T2I generation methods by a large margin both qualitatively and quantitatively on several benchmarks.Comment: Preprint. Under review. Project page: https://sagileo.github.io/Region-and-Boundar

    Uniaxial Tension Simulation Using Real Microstructure-based Representative Volume Elements Model of Dual Phase Steel Plate

    Get PDF
    AbstractDual-phase steels have become a favored material for car bodies. In this study, the deformation behavior of dual-phase steels under uniaxial tension is investigated by means of 2D Representative Volume Elements (RVE) model. The real metallographic graphs including particle geometry, distribution and morphology are considered in this RVE model. Stress and strain distributions between martensite and ferrite are analyzed. The results show that martensite undertakes most stress without significant strain while ferrite shares the most strain. The tensile failure is the result of the deforming inhomogeneity between martensite phase and ferrite phase, which is the key factor triggering the plastic strain localization on specimen section during the tensile test
    • …
    corecore