88 research outputs found

    The Renaissance of Black Phosphorus

    Get PDF
    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a two-dimensional (2D) layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.Comment: 23 pages, 6 figures, perspective article, appeared online in PNA

    Individual Parametric Insurance Product Design

    Get PDF
    This report presents a design of a parametric insurance product for individual consumers in two neighboring countries AmbernĎŠa and PalČŤmĎŠnĎŠa. Unlike traditional insurance, this product issues a predetermined payout to a policyholder when a pre-agreed event has been triggered. By conducting analyses on given health data in the countries, we first projected individual losses and calculated premiums according to gender, age and risk factor information. Then we defined triggering events and modeled the payout scheme for our product. Comprehensive strategies are also provided for marketing and risk mitigation

    Meta-learning for Multi-variable Non-convex Optimization Problems: Iterating Non-optimums Makes Optimum Possible

    Full text link
    In this paper, we aim to address the problem of solving a non-convex optimization problem over an intersection of multiple variable sets. This kind of problems is typically solved by using an alternating minimization (AM) strategy which splits the overall problem into a set of sub-problems corresponding to each variable, and then iteratively performs minimization over each sub-problem using a fixed updating rule. However, due to the intrinsic non-convexity of the overall problem, the optimization can usually be trapped into bad local minimum even when each sub-problem can be globally optimized at each iteration. To tackle this problem, we propose a meta-learning based Global Scope Optimization (GSO) method. It adaptively generates optimizers for sub-problems via meta-learners and constantly updates these meta-learners with respect to the global loss information of the overall problem. Therefore, the sub-problems are optimized with the objective of minimizing the global loss specifically. We evaluate the proposed model on a number of simulations, including solving bi-linear inverse problems: matrix completion, and non-linear problems: Gaussian mixture models. The experimental results show that our proposed approach outperforms AM-based methods in standard settings, and is able to achieve effective optimization in some challenging cases while other methods would typically fail.Comment: 15 pages, 8 figure

    Numerical and Experimental Study on the Multiobjective Optimization of a Two-Disk Flexible Rotor System

    Get PDF
    With the ever-increasing requirement for the thrust to weight ratio, the rotational speed of modern aeroengine is increasingly improved; thus most of the aeroengine rotor is flexible. Some dynamic problems, such as excessive vibration, appear due to the increase of the rotation speed of the aeroengine. The aim of this study is to reduce the vibration level of the flexible rotor system through optimum design. A laboratory scale two-disk flexible rotor system representing a typical aeroengine rotor system is designed. A combinational optimization strategy coupling the rotordynamics calculation software ANSYS and the multidisciplinary optimization software ISIGHT is proposed to optimize the rotor system. The positions of the disks are selected as the design variables. Constraints are imposed on critical speeds. The disks’ amplitudes and bearings’ transmitted forces are chosen as the optimization objectives. Using this strategy, the optimal positions of the two disks are obtained. The numerical optimization results are verified by the experiments based on the test rig. The results show a significant vibration level reduction after optimization

    Design, fabrication and characterization of terahertz quantum-well photodetectors

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 139-144).Terahertz (THz) photodetectors are important in the fully exploration and development of electromagnetic spectrum. However, a fast and sensitive THz photodetector ready for array integration is not available. A THz Quantum-well Photodetector (QWP) has the properties of being fast, sensitive, low-noise, and narrow-band. It is promising for large-array integration for THz imaging. In addition, a THz QWP-LED (Light-Emitting Diode) can upconvert the THz to NIR radiation and useful for THz imaging in Focal-Plane Array (FPA). In this thesis project, the theory of the intersubband transition and carrier transport in a THz QWP is studied. The designe, fabrication, measurement-system buildup, and characterization are performed. In addition, the design and fabrication process of THz QWP-LED are also carried out. Such devices have potential applications in many fields such as biology, medication and security.by Shengxi Huang.S.M

    Recovery of Rare Earth Elements from Phosphate Rock by Hydrometallurgical Processes - A Critical Review

    Get PDF
    Generally, phosphate rock contains about 0.05wt% rare earth elements (REEs) on average. And the world commercial phosphate rock production is estimated to be 250 million tons per year, which makes phosphate rock a potential new REEs resource. However, low content of REEs in phosphate rock leads to the technical challenges and cost overages that hindered the commercial recovery of REEs. In this paper, an overview of achievements aiming at solving the challenges is given. Based on the decomposition processes of phosphate rock by H2SO4, HNO3, HCl, H3PO4, various REEs recovery processes via crystallization, precipitation, solvent extraction and ion exchange methods are systematically reviewed. In H2SO4 processes, REEs are recovered based on the removal of impurities from phosphoric acid and phosphogypsum since the main challenge is the diluted content of REEs in these products. In the case of HCl, HNO3 and H3PO4 processes, REEs entirely transfers into leaching solution and the recovery research are mainly focused on REEs extraction from leaching solutions. For REE extraction from high phosphorus content leaching solutions, crystallization, precipitation, and ion exchange methods are currently inconsiderable due to the high energy consumption, impurity involvement and low efficiency, respectively. Solvent extraction seems to be the potential promising method in terms of its good overall performance. Finally, recommendations to promote the development of REEs recovery technologies from phosphate rock are provided.

    Quantized Thermoelectric Hall Effect Induces Giant Power Factor in a Topological Semimetal

    Get PDF
    Thermoelectrics are promising by directly generating electricity from waste heat. However, (sub-)room-temperature thermoelectrics have been a long-standing challenge due to vanishing electronic entropy at low temperatures. Topological materials offer a new avenue for energy harvesting applications. Recent theories predicted that topological semimetals at the quantum limit can lead to a large, non-saturating thermopower and a quantized thermoelectric Hall conductivity approaching a universal value. Here, we experimentally demonstrate the non-saturating thermopower and quantized thermoelectric Hall effect in the topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal thermopower Sxx= 1.1x10^3 muV/K and giant power factor ~525 muW/cm/K^2 are observed at ~40K, which is largely attributed to the quantized thermoelectric Hall effect. Our work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward low-temperature energy harvesting applications.Comment: 54 pages total, 5 main figures + 22 supplementary figures. To appear in Nature Communications (2020

    Defects Vibrations Engineering for Enhancing Interfacial Thermal Transport

    Full text link
    To push upper boundaries of effective thermal conductivity in polymer composites, a fundamental understanding of thermal transport mechanisms is crucial. Although there is intensive simulation research, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide); we choose polar polyvinyl alcohol (PVA) as a matrix model; and we identify how thermal transport occurs across heterogeneous interfaces. Measured thermal conductivities of in PVA/defective filler composites is higher than those of PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. An effective quantum mechanical model is developed, showing that the vibrational state of the defective level plays a critical role in enhancing the thermal conductivity with increased defect concentration. Our experimental and model results have suggested that defects in polymer composites may enhance thermal transport in polymer composites by promoting vibrational resonant couplings.Comment: Enclosed: (i) Main Manuscript, including 5 main figures. (ii) Supplementary Information, including 16 Supplementary Figures and one self-contained theoretical sectio
    • …
    corecore