6,686 research outputs found

    A practical approach to managing patients with HCV infection.

    Get PDF
    Hepatitis C virus (HCV) infection is a major worldwide public health concern. It is a common cause of chronic liver disease and hepatocellular carcinoma. HCV antibody and HCV RNA testing are available diagnostic studies that offer high degree of accuracy. Current standard therapy includes a combination of pegylated interferon and ribavirin. Response rate is approximately 40% for genotype 1 and 80% for genotypes 2 and 3, respectively. Successful treatment can stop the progression of chronic liver disease, reduce the need for liver transplantation, and possibly decrease the risk for Hepatocellular carcinoma (HCC). Evaluating for potential treatment candidacy is an important initial step in the management of chronic HCV infection as not all individuals may need or qualify for the treatment. Understanding the natural history, the different diagnostic modalities, the current therapeutic options and, the treatment response and adverse effect profiles can help the practitioners better manage chronic HCV infection

    Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Full text link
    The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of momentum. We show that while this observation is inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that the strong anisotropies measured by other probes sensitive to the residual density of states are not related to the pairing interaction itself, but rather emerge naturally from the smaller lifetime of the superconducting Cooper pairs that is a direct consequence of the momentum dependent interband scattering inherent to these materials.Comment: 7 pages, 5 figure

    Phase I and Phase II Therapies for Acute Ischemic Stroke: An Update on Currently Studied Drugs in Clinical Research.

    Get PDF
    Acute ischemic stroke is a devastating cause of death and disability, consequences of which depend on the time from ischemia onset to treatment, the affected brain region, and its size. The main targets of ischemic stroke therapy aim to restore tissue perfusion in the ischemic penumbra in order to decrease the total infarct area by maintaining blood flow. Advances in research of pathological process and pathways during acute ischemia have resulted in improvement of new treatment strategies apart from restoring perfusion. Additionally, limiting the injury severity by manipulating the molecular mechanisms during ischemia has become a promising approach, especially in animal research. The purpose of this article is to review completed and ongoing phases I and II trials for the treatment of acute ischemic stroke, reviewing studies on antithrombotic, thrombolytic, neuroprotective, and antineuroinflammatory drugs that may translate into more effective treatments

    Specifying angular momentum and center of mass for vacuum initial data sets

    Full text link
    We show that it is possible to perturb arbitrary vacuum asymptotically flat spacetimes to new ones having exactly the same energy and linear momentum, but with center of mass and angular momentum equal to any preassigned values measured with respect to a fixed affine frame at infinity. This is in contrast to the axisymmetric situation where a bound on the angular momentum by the mass has been shown to hold for black hole solutions. Our construction involves changing the solution at the linear level in a shell near infinity, and perturbing to impose the vacuum constraint equations. The procedure involves the perturbation correction of an approximate solution which is given explicitly.Comment: (v2) a minor change in the introduction and a remark added after Theorem 2.1; (v3) final version, appeared in Comm. Math. Phy

    Diffusional transfer function for the scanning electrical mobility spectrometer (SEMS)

    Get PDF
    The scanning electrical mobility spectrometer (SEMS), or scanning mobility particle sizer (SMPS), uses the differential mobility analyzer (DMA) operated in scanning mode to measure particle size distribution rapidly. To obtain the actual size distribution, the real-time transfer function (transmission efficiency of particles of different mobilities) is necessary, which has previously been investigated with numerical simulations or semi-analytical calculations. We present here a rigorous derivation of the diffusional DMA transfer function for an increasing-voltage scan based on analytically resolving particle trajectories between the instrument inlet and the outlet. This requires a 2D integration in the inlet and outlet space over the contour plot of the particle mobility distribution that can successfully transmit through the scanning DMA. For the first time, we show that the up-scan DMA transfer function for non-diffusive particles is trapezoidal (instead of triangular). The key parameter that determines the shape of the scanning DMA transfer function is the ratio of the characteristic scanning time to the average residence time, which yields the same transfer function as that for the static DMA when the ratio gets sufficiently large. The effect of particle diffusion is included via an extended outlet. The dimensionless equations for the trajectories and the method presented here can be generalized to the column DMA of any geometry

    Orbital Characters Determined from Fermi Surface Intensity Patterns using Angle-Resolved Photoemission Spectroscopy

    Full text link
    In order to determine the orbital characters on the various Fermi surface pockets of the Fe-based superconductors Ba0.6_{0.6}K0.4_{0.4}Fe2_{2}As2_{2} and FeSe0.45_{0.45}Te0.55_{0.55}, we introduce a method to calculate photoemission matrix elements. We compare our simulations to experimental data obtained with various experimental configurations of beam orientation and light polarization. We show that the photoemission intensity patterns revealed from angle-resolved photoemission spectroscopy measurements of Fermi surface mappings and energy-momentum plots along high-symmetry lines exhibit asymmetries carrying precious information on the nature of the states probed, information that is destroyed after the data symmetrization process often performed in the analysis of angle-resolved photoemission spectroscopy data. Our simulations are consistent with Fermi surfaces originating mainly from the dxyd_{xy}, dxzd_{xz} and dyzd_{yz} orbitals in these materials.Comment: 16 pages, 9 figures. Figures modified, typos corrected, appendix adde
    • …
    corecore