30 research outputs found
Genome-Wide Characterization and Evolutionary Expansion of Poplar NAC Transcription Factors and Their Tissue-Specific Expression Profiles under Drought
The NAC (NAM, ATAF1/2 and CUC2) is a large gene family of plant-specific transcription factors that play a pivotal role in various physiological processes and abiotic stresses. Due to the lack of genome-wide characterization, intraspecific and interspecific synteny, and drought-responsive expression pattern of NAC genes in poplar, the functional characterization of drought-related NAC genes have been scarcely reported in Populus species. Here, we identified a total of 170 NAC domain-containing genes in the P. trichocarpa genome, 169 of which were unevenly distributed on its nineteen chromosomes. These NAC genes were phylogenetically divided into twenty subgroups, some of which exhibited a similar pattern of exon–intron architecture. The synteny and Ka/Ks analysis indicated that the expansion of NAC genes in poplar was mainly due to gene duplication events occurring before and after the divergence of Populus and Salix. Ten PdNAC (P. deltoids × P. euramericana cv.’Nanlin895’) genes were randomly selected and cloned. Their drought-responsive expression profiles showed a tissue-specific pattern. The transcription factor PdNAC013 was verified to be localized in the nucleus. Our research results provide genomic information for the expansion of NAC genes in the poplar genome, and for further characterizing putative poplar NAC genes associated with water-deficit
Study of spontaneous mutations in the transmission of poplar chloroplast genomes from mother to offspring
Abstract Background Chloroplasts have their own genomes, independent from nuclear genomes, that play vital roles in growth, which is a major targeted trait for genetic improvement in Populus. Angiosperm chloroplast genomes are maternally inherited, but the chloroplast’ variation pattern of poplar at the single-base level during the transmission from mother to offspring remains unknown. Results Here, we constructed high-quality and almost complete chloroplast genomes for three poplar clones, ‘NL895’ and its parents, ‘I69’ and ‘I45’, from the short-read datasets using multi-pass sequencing (15–16 times per clone) and ultra-high coverage (at least 8500× per clone), with the four-step strategy of Simulation–Assembly–Merging–Correction. Each of the three resulting chloroplast assemblies contained contigs covering > 99% of Populus trichocarpa chloroplast DNA as a reference. A total of 401 variant loci were identified by a hybrid strategy of genome comparison-based and mapping-based single nucleotide polymorphism calling. The genotypes of 94 variant loci were different among the three poplar clones. However, only 1 of the 94 loci was a missense mutation, which was located in the exon region of rpoC1 encoding the β’ subunit of plastid-encoded RNA polymerase. The genotype of the loci in NL895 and its female parent (I69) was different from that of its male parent (I45). Conclusions This research provides resources for further chloroplast genomic studies of a F1 full-sibling family derived from a cross between I69 and I45, and will improve the application of chloroplast genomic information in modern Populus breeding programs
Function and Chromosomal Localization of Differentially Expressed Genes Induced by Marssonina brunnea f. sp. mul- tigermtubi in Populus deltoides
Abstract: A total of 1,160 differentially expressed genes induced by Marssonina brunnea f. sp. multigermtubi were identified in Populus deltoides cv. 'Lux' (I-69/55) with two-colour cDNA microarray including 2,952 cDNAs from two cDNA libraries constructed with 72 h inoculated poplar leaves. Functional analysis showed that 1,160 genes were classified into 11 functional categories that are involved in metabolism (15.9%), signal transduction (9.5%), transcription and replication (8.7%), and cell rescue and defense (7.8%). Among them, 926 genes were sporadically localized on 19 linkage groups. Chromosome 2 contained 102 (11%) differentially expressed genes, followed by chromosome 1 which contains 93 genes (10%), and chromosome 17 had the least number of differentially expressed genes. Clustering of expressed sequence tags (ESTs) in poplar genome was observed at the terminal regions of several chromosomes. The relationship between cluster of genes and plant defense response would be further studied
Trilocus Disequilibrium Analysis of Multiallelic Markers in Outcrossing Populations
Multiallelic markers, such as microsatellites, provide a powerful tool for studying the genetic structure and organization of an outcrossing population. However, statistical methods of analyzing multiallelic markers in current literature are limited in scope due to the complexity of the multiple alleles. We present a closed-form EM algorithm framework to estimate trigenic linkage disequilibria coefficients of three multiallelic markers and present joint and separate statistical hypothesis tests of different linkage disequilibria. Linkage disequilibria analysis with three multiallelic markers is shown to be considerably more powerful than a two marker analysis or a three marker analysis that treats the multiallelic markers as biallelic markers. A three multiallelic marker model was used to analyze marker data from Lycoris longituba, a tulip-like ornamental plant in China, where each marker consisted of two to four distinct alleles. This algorithm will be useful for studying the pattern of genetic variation for outcrossing populations.
Natural variation in petal color in Lycoris longituba revealed by anthocyanin components.
Lycoris longituba is one of the species belonging to the Amaryllidaceae family. Despite its limited distribution, endemic to central eastern China, this species displays an exceptionally wide diversity of flower colors from purple, red, orange, to yellow, in nature. We study the natural variation of floral color in L. longituba by testing the components of water-soluble vacuolar pigments--anthocyanins--in its petals using high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry. Four anthocyanins were identified, cyanidin-3-sophoroside (Cy3So), cyanidin-3-xylosylglucoside (Cy3XyGlc), cyanidin-3-sambubioside (Cy3Sa), and pelargonidin-3-xylosylglucoside (Pg3XyGlc), which occur at various amounts in L. longituba petals of different colors. A multivariate analysis was used to explore the relationship between pigments and flower color. Anthocyanins have been thought to play a major role in acting as a UV screen that protects the plant's DNA from sunlight damage and attracting insects for the purpose of pollination. Thus, knowledge about the content and type of anthocyanins determining the petal coloration of Lycoris longituba will help to study the adaptive evolution of flowers and provide useful information for the ornamental breeding of this species
Natural Variation in Petal Color in Lycoris longituba Revealed by Anthocyanin Components
Lycoris longituba is one of the species belonging to the Amaryllidaceae family. Despite its limited distribution, endemic to central eastern China, this species displays an exceptionally wide diversity of flower colors from purple, red, orange, to yellow, in nature. We study the natural variation of floral color in L. longituba by testing the components of water-soluble vacuolar pigments – anthocyanins – in its petals using high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry. Four anthocyanins were identified, cyanidin-3-sophoroside (Cy3So), cyanidin-3-xylosylglucoside (Cy3XyGlc), cyanidin-3-sambubioside (Cy3Sa), and pelargonidin-3-xylosylglucoside (Pg3XyGlc), which occur at various amounts in L. longituba petals of different colors. A multivariate analysis was used to explore the relationship between pigments and flower color. Anthocyanins have been thought to play a major role in acting as a UV screen that protects the plant's DNA from sunlight damage and attracting insects for the purpose of pollination. Thus, knowledge about the content and type of anthocyanins determining the petal coloration of Lycoris longituba will help to study the adaptive evolution of flowers and provide useful information for the ornamental breeding of this species