147 research outputs found

    Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast

    Get PDF
    Abstract The yeast Saccharomyces cerevisiae is widely used as a cell factory to produce recombinant proteins. However, S. cerevisiae naturally secretes only a few proteins, such as invertase and the mating alpha factor, and its secretory capacity is limited. It has been reported that engineering protein anterograde trafficking from the endoplasmic reticulum to the Golgi apparatus by the moderate overexpression of SEC16 could increase recombinant protein secretion in S. cerevisiae. In this study, the retrograde trafficking in a strain with moderate overexpression of SEC16 was engineered by overexpression of ADP-ribosylation factor GTP activating proteins, Gcs1p and Glo3p, which are involved in the process of COPI-coated vesicle formation. Engineering the retrograde trafficking increased the secretion of α-amylase but did not induce production of reactive oxygen species. An expanded ER membrane was detected in both the GCS1 and GLO3 overexpression strains. Physiological characterizations during batch fermentation showed that GLO3 overexpression had better effect on recombinant protein secretion than GCS1 overexpression. Additionally, the GLO3 overexpression strain had higher secretion of two other recombinant proteins, endoglucanase I from Trichoderma reesei and glucan-1,4-α-glucosidase from Rhizopus oryzae, indicating overexpression of GLO3 in a SEC16 moderate overexpression strain might be a general strategy for improving production of secreted proteins by yeast

    Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae

    Get PDF
    The yeast Saccharomyces cerevisiae is widely used to produce biopharmaceutical proteins. However, the limited capacity of the secretory pathway may reduce its productivity. Here, we increased the secretion of a heterologous beta-amylase, a model protein used for studying the protein secretory pathway in yeast, by moderately overexpressing SEC16, which is involved in protein translocation from the endoplasmic reticulum to the Golgi apparatus. The moderate overexpression of SEC16 increased beta-amylase secretion by generating more endoplasmic reticulum exit sites. The production of reactive oxygen species resulting from the heterologous beta-amylase production was reduced. A genome-wide expression analysis indicated decreased endoplasmic reticulum stress in the strain that moderately overexpressed SEC16, which was consistent with a decreased volume of the endoplasmic reticulum. Additionally, fewer mitochondria were observed. Finally, the moderate overexpression of SEC16 was shown to improve the secretion of two other recombinant proteins, Trichoderma reesei endoglucanase I and Rhizopus oryzae glucan-1,4-beta-glucosidase, indicating that this mechanism is of general relevance. IMPORTANCE There is an increasing demand for recombinant proteins to be used as enzymes and pharmaceuticals. The yeast Saccharomyces cerevisiae is a cell factory that is widely used to produce recombinant proteins. Our study revealed that moderate overexpression of SEC16 increased recombinant protein secretion in S. cerevisiae. This new strategy can be combined with other targets to engineer cell factories to efficiently produce protein in the future

    Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast

    Get PDF
    The yeast Saccharomyces cerevisiae is widely used as a cell factory to produce recombinant proteins. However, S. cerevisiae naturally secretes only a few proteins, such as invertase and the mating alpha factor, and its secretory capacity is limited. It has been reported that engineering protein anterograde trafficking from the endoplasmic reticulum to the Golgi apparatus by the moderate overexpression of SEC16 could increase recombinant protein secretion in S. cerevisiae. In this study, the retrograde trafficking in a strain with moderate overexpression of SEC16 was engineered by overexpression of ADP-ribosylation factor GTP activating proteins, Gcs1p and Glo3p, which are involved in the process of COPI-coated vesicle formation. Engineering the retrograde trafficking increased the secretion of alpha-amylase but did not induce production of reactive oxygen species. An expanded ER membrane was detected in both the GCS1 and GLO3 overexpression strains. Physiological characterizations during batch fermentation showed that GLO3 overexpression had better effect on recombinant protein secretion than GCS1 overexpression. Additionally, the GLO3 overexpression strain had higher secretion of two other recombinant proteins, endoglucanase I from Trichoderma reesei and glucan-1,4-alpha-glucosidase from Rhizopus oryzae, indicating overexpression of GLO3 in a SEC16 moderate overexpression strain might be a general strategy for improving production of secreted proteins by yeast

    Efficient protein production by yeast requires global tuning of metabolism

    Get PDF
    The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular, altered energy metabolism resulting in reduced respiration and increased fermentation, as well as balancing of amino-acid biosynthesis and reduced thiamine biosynthesis seem to be particularly important. We confirm our findings by inverse engineering and physiological characterization and show that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion

    Effect of CO2 Stress Pretreatment and Electron Beam Irradiation on the Quality of NFC Apple Juice

    Get PDF
    The single processing technology is difficult to meet the multiple requirements of the NFC juice, such as maintaining the nutrition and flavor, reducing browning and sterilization. In order to explore the combined effect of stress pretreatment and sterilization technologies on NFC fruit juice, 50% CO2 stress pretreatment was used before apple juice squeezed to study the influence of different stress intensity on sensory quality and nutritional quality of apple juice. The effects of electron beam irradiation and pasteurization on sensory and nutritional quality and bacteriologic effect of apple juice were also studied. The results showed that: 50% CO2 stress pretreatment could significantly increase the total phenolic content, antioxidant activity and VC content of the NFC apple juice (P<0.05). Stored for 48 h, the total phenolic content and total antioxidant capacity of the 60 min stressed apple juice group were 118.7% and 104% of the control, respectively. Moreover, the CO2 stress treatment significantly decreased the browning degree of NFC juice (P<0.05). Compared with the control and pasteurized groups, the browning degree of 2 kGy irradiation group and 4 kGy irradiation group were significantly lower (P<0.05), the total phenolic content and aroma were also better maintained, among which the 4 kGy irradiation was more effective. In the same time, compared with the control group, the 2 kGy and 4 kGy electron beam irradiation groups had a significant antibacterial effect (P<0.05), which all met the requirements of the national standards. 50% CO2 stress pre-treatment combined with 4 kGy electron beam irradiation sterilization can be used as a new NFC apple juice processing technique

    Engineering the protein secretory pathway of <i>Saccharomyces cerevisiae</i> enables improved protein production

    Get PDF
    Baker’s yeast Saccharomyces cerevisiae is one of the most important and widely used cell factories for recombinant protein production. Many strategies have been applied to engineer this yeast for improving its protein production capacity, but productivity is still relatively low, and with increasing market demand, it is important to identify new gene targets, especially targets that have synergistic effects with previously identified targets. Despite improved protein production, previous studies rarely focused on processes associated with intracellular protein retention. Here we identified genetic modifications involved in the secretory and trafficking pathways, the histone deacetylase complex, and carbohydrate metabolic processes as targets for improving protein secretion in yeast. Especially modifications on the endosome-to-Golgi trafficking was found to effectively reduce protein retention besides increasing protein secretion. Through combinatorial genetic manipulations of several of the newly identified gene targets, we enhanced the protein production capacity of yeast by more than fivefold, and the best engineered strains could produce 2.5 g/L of a fungal α-amylase with less than 10% of the recombinant protein retained within the cells, using fed-batch cultivation

    Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative

    Get PDF
    Saccharomyces cerevisiae is a Crabtree-positive eukaryal model organism. It is believed that the Crabtree effect has evolved as a competition mechanism by allowing for rapid growth and production of ethanol at aerobic glucose excess conditions. This inherent property of yeast metabolism and the multiple mechanisms underlying it require a global rewiring of the entire metabolic network to abolish the Crabtree effect. Through rational engineering of pyruvate metabolism combined with adaptive laboratory evolution (ALE), we demonstrate that it is possible to obtain such a global rewiring and hereby turn S. cerevisiae into a Crabtree-negative yeast. Using integrated systems biology analysis, we identify that the global rewiring of cellular metabolism is accomplished through a mutation in the RNA polymerase II mediator complex, which is also observed in cancer cells expressing the Warburg effect

    Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints

    Get PDF
    Eukaryotic cells are used as cell factories to produce and secrete multitudes of recombinant pharmaceutical proteins, including several of the current top-selling drugs. Due to the essential role and complexity of the secretory pathway, improvement for recombinant protein production through metabolic engineering has traditionally been relatively ad-hoc; and a more systematic approach is required to generate novel design principles. Here, we present the proteome-constrained genome-scale protein secretory model of yeast Saccharomyces cerevisiae (pcSecYeast), which enables us to simulate and explain phenotypes caused by limited secretory capacity. We further apply the pcSecYeast model to predict overexpression targets for the production of several recombinant proteins. We experimentally validate many of the predicted targets for alpha-amylase production to demonstrate pcSecYeast application as a computational tool in guiding yeast engineering and improving recombinant protein production. Due to the complexity of the protein secretory pathway, strategy suitable for the production of a certain recombination protein cannot be generalized. Here, the authors construct a proteome-constrained genome-scale protein secretory model for yeast and show its application in the production of different misfolded or recombinant proteins
    • …
    corecore