5 research outputs found
Recommended from our members
Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA.
N6-methyladenosine (m6A) modification provides an important epitranscriptomic mechanism that critically regulates RNA metabolism and function. However, how m6A writers attain substrate specificities remains unclear. We report the 3.1 Ã…-resolution crystal structure of human CCHC zinc finger-containing protein ZCCHC4, a 28S rRNA-specific m6A methyltransferase, bound to S-adenosyl-L-homocysteine. The methyltransferase (MTase) domain of ZCCHC4 is packed against N-terminal GRF-type and C2H2 zinc finger domains and a C-terminal CCHC domain, creating an integrated RNA-binding surface. Strikingly, the MTase domain adopts an autoinhibitory conformation, with a self-occluded catalytic site and a fully-closed cofactor pocket. Mutational and enzymatic analyses further substantiate the molecular basis for ZCCHC4-RNA recognition and a role of the stem-loop structure within substrate in governing the substrate specificity. Overall, this study unveils unique structural and enzymatic characteristics of ZCCHC4, distinctive from what was seen with the METTL family of m6A writers, providing the mechanistic basis for ZCCHC4 modulation of m6A RNA methylation
Recommended from our members
Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA.
N6-methyladenosine (m6A) modification provides an important epitranscriptomic mechanism that critically regulates RNA metabolism and function. However, how m6A writers attain substrate specificities remains unclear. We report the 3.1 Ã…-resolution crystal structure of human CCHC zinc finger-containing protein ZCCHC4, a 28S rRNA-specific m6A methyltransferase, bound to S-adenosyl-L-homocysteine. The methyltransferase (MTase) domain of ZCCHC4 is packed against N-terminal GRF-type and C2H2 zinc finger domains and a C-terminal CCHC domain, creating an integrated RNA-binding surface. Strikingly, the MTase domain adopts an autoinhibitory conformation, with a self-occluded catalytic site and a fully-closed cofactor pocket. Mutational and enzymatic analyses further substantiate the molecular basis for ZCCHC4-RNA recognition and a role of the stem-loop structure within substrate in governing the substrate specificity. Overall, this study unveils unique structural and enzymatic characteristics of ZCCHC4, distinctive from what was seen with the METTL family of m6A writers, providing the mechanistic basis for ZCCHC4 modulation of m6A RNA methylation
Recommended from our members
Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations.
DNA methyltransferase DNMT3B plays an essential role in establishment of DNA methylation during embryogenesis. Mutations of DNMT3B are associated with human diseases, notably the immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome. How ICF mutations affect DNMT3B activity is not fully understood. Here we report the homo-oligomeric structure of DNMT3B methyltransferase domain, providing insight into DNMT3B-mediated DNA methylation in embryonic stem cells where the functional regulator DNMT3L is dispensable. The interplay between one of the oligomer interfaces (FF interface) and the catalytic loop renders DNMT3B homo-oligomer a conformation and activity distinct from the DNMT3B-DNMT3L heterotetramer, and a greater vulnerability to certain ICF mutations. Biochemical and cellular analyses further reveal that the ICF mutations of FF interface impair the DNA binding and heterochromatin targeting of DNMT3B, leading to reduced DNA methylation in cells. Together, this study provides a mechanistic understanding of DNMT3B-mediated DNA methylation and its dysregulation in disease
Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations
In mammals, de novo DNA methyltransferase DNMT3B is essential for establishing DNA methylation patterns during embryonic development. Here the authors provide a structure-function characterization of homo-oligomeric DNMT3B, revealing the molecular basis for its vulnerability to ICF mutations