38 research outputs found

    Interfacial Stresses on Droplet Interface Bilayers Using Two Photon Fluorescence Lifetime Imaging Microscopy

    Full text link
    Response of lipid bilayers to external mechanical stimuli is an active area of research with implications for fundamental and synthetic cell biology. However, there is a lack of tools for systematically imposing mechanical strains and non-invasively mapping out interfacial (membrane) stress distributions on lipid bilayers. In this article, we report a miniature platform to manipulate model cell membranes in the form of droplet interface bilayers (DIBs), and non-invasively measure spatio-temporally resolved interfacial stresses using two photon fluorescence lifetime imaging of an interfacially active molecular flipper (Flipper-TR). We established the effectiveness of the developed framework by investigating interfacial stresses accompanying three key processes associated with DIBs: thin film drainage between lipid monolayer coated droplets, bilayer formation, and bilayer separation. Interestingly, the measurements also revealed fundamental aspects of DIBs including the existence of a radially decaying interfacial stress distribution post bilayer formation, and the simultaneous build up and decay of stress respectively at the bilayer corner and center during bilayer separation. Finally, utilizing interfacial rheology measurements and MD simulations, we also reveal that the tested molecular flipper is sensitive to membrane fluidity that changes with interfacial stress - expanding the scientific understanding of how molecular motors sense stress.Comment: 8 pages, 4 figure

    Design, synthesis and antitubercular evaluation of benzothiazinones containing a piperidine moiety

    Get PDF
    We herein report the design and synthesis of benzothiazinones containing a piperidine moiety as new antitubercular agents based on the structure feature of IMB-ZR-1 discovered in our lab. Some of them were found to have good in vitro activity (MIC < 1 μg/mL) against drug-susceptible Mycobacterium tuberculosis H37RV strain. After two set of modifications, compound 2i were found to display comparable in vitro anti-TB activity (MIC < 0.016 μg/mL) to PBTZ169 against drug-sensitive and resistant mycobacterium tuberculosis strains. Compound 2i also showed acceptable PK profiles. Studies to determine PK profiles in lung and in vivo efficacy of 2i are currently under way

    Design, synthesis and in vitro anti-Zika virus evaluation of novel Sinefungin derivatives

    Get PDF
    We report herein the design and synthesis of a series of novel Sinefungin (SIN) derivatives, based on the structures of SIN and its analogue EPZ004777. Our results reveal that target compounds 1ad-af, 1ba-bb and 1bf-bh show better activity (IC50 = 4.56–20.16 μM) than EPZ004777 (IC50 = 35.19 μM). Surprisingly, SIN was founded to be not as active (IC50 > 50 μM) as we and other research groups predicted. Interestingly, the intermediates 9a-b and 11b display potent anti-ZIKV potency (IC50 = 6.33–29.98 μM), and compound 9a also exhibits acceptable cytotoxicity (CC50 > 200 μM), suggesting their promising potential to be leads for further development

    Sesn3 protects against diet‐induced nonalcoholic steatohepatitis in mice via suppression of the TGFβ signal transduction

    Get PDF
    Sesn3 belongs to the three‐member sestrin protein family. Sestrins have been implicated in anti‐oxidative stress, AMPK and mTOR signal transduction, and metabolic homeostasis. However, the role of Sesn3 in the development of nonalcoholic steatohepatitis (NASH) has not been previously studied. In this work, we generated Sesn3 whole‐body knockout and liver‐specific transgenic mice to investigate the hepatic function of Sesn3 in diet‐induced NASH. With only 4 weeks of dietary treatment, Sesn3 knockout mice developed severe NASH phenotype as characterized by hepatic steatosis, inflammation, and fibrosis. Strikingly, after 8‐week feeding with a NASH‐inducing diet, Sesn3 transgenic mice were largely protected against NASH development. Transcriptomic analysis revealed that multiple extracellular matrix related processes were upregulated including TGFβ signaling and collagen production. Further biochemical and cell biological analyses have illustrated a critical control of the TGFβ‐Smad pathway by Sesn3 at the TGFβ receptor and Smad3 levels. First, Sesn3 inhibits the TGFβ receptor through an interaction with Smad7; second, Sesn3 directly inhibits the Smad3 function through protein‐protein interaction and cytosolic retention

    Sestrin Proteins Protect Against Lipotoxicity-Induced Oxidative Stress in the Liver via Suppression of C-Jun N-Terminal Kinases

    Get PDF
    Background & aims: Sestrin 1/2/3 (Sesn1/2/3) belong to a small family of proteins that have been implicated in the regulation of metabolic homeostasis and oxidative stress. However, the underlying mechanisms remain incompletely understood. The aim of this work was to illustrate the collective function of Sesn1/2/3 in the protection against hepatic lipotoxicity. Methods: We used Sesn1/2/3 triple knockout (TKO) mouse and cell models to characterize oxidative stress and signal transduction under lipotoxic conditions. Biochemical, histologic, and physiological approaches were applied to illustrate the related processes. Results: After feeding with a Western diet for 8 weeks, TKO mice developed remarkable metabolic associated fatty liver disease that was manifested by exacerbated hepatic steatosis, inflammation, and fibrosis compared with wild-type counterparts. Moreover, TKO mice exhibited higher levels of hepatic lipotoxicity and oxidative stress. Our biochemical data revealed a critical signaling node from sestrins to c-Jun N-terminal kinases (JNKs) in that sestrins interact with JNKs and mitogen-activated protein kinase kinase 7 and suppress the JNK phosphorylation and activity. In doing so, sestrins markedly reduced palmitate-induced lipotoxicity and oxidative stress in both mouse and human hepatocytes. Conclusions: The data from this study suggest that Sesn1/2/3 play an important role in the protection against lipotoxicity-associated oxidative stress and related pathology in the liver

    Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping

    Get PDF
    Background & aims: Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D) and obesity are epidemiologically correlated with each other but the causal inter-relationships between them remain incompletely understood. We aimed to explore the causal relationships between the 3 diseases. Methods: Using both UK Biobank and publicly available genome-wide association study data, we performed a 2-sample bidirectional Mendelian randomization analysis to test the causal inter-relationships between NAFLD, T2D, and obesity. Transgenic mice expressing the human PNPLA3-I148M isoforms (TghPNPLA3-I148M) were used as an example to validate causal effects and explore underlying mechanisms. Results: Genetically driven NAFLD significantly increased the risk of T2D and central obesity but not insulin resistance or generalized obesity, while genetically driven T2D, body mass index and WHRadjBMI causally increased NAFLD risk. The animal study focusing on PNPLA3 corroborated these causal effects: compared to the TghPNPLA3-I148I controls, the TghPNPLA3-I148M mice developed glucose intolerance and increased visceral fat, but maintained normal insulin sensitivity, reduced body weight, and decreased circulating total cholesterol. Mechanistically, the TghPNPLA3-I148M mice demonstrated decreased pancreatic insulin but increased glucagon secretion, which was associated with increased pancreatic inflammation. In addition, transcription of hepatic cholesterol biosynthesis pathway genes was significantly suppressed, while transcription of thermogenic pathway genes was activated in subcutaneous and brown adipose tissues but not in visceral fat in TghPNPLA3-I148M mice. Conclusions: Our study suggests that lifelong, genetically driven NAFLD causally promotes T2D with a late-onset type 1-like diabetic subphenotype and central obesity; while genetically driven T2D, obesity, and central obesity all causally increase the risk of NAFLD. This causal relationship revealed new insights into how nature and nurture drive these diseases, providing novel hypotheses for disease subphenotyping. Lay summary: Non-alcoholic fatty liver disease, type 2 diabetes and obesity are epidemiologically correlated with each other, but their causal relationships were incompletely understood. Herein, we identified causal relationships between these conditions, which suggest that each of these closely related diseases should be further stratified into subtypes. This is important for accurate diagnosis, prevention and treatment of these diseases

    Characterization and gene expression patterns analysis implies BSK family genes respond to salinity stress in cotton

    Get PDF
    Identification, evolution, and expression patterns of BSK (BR signaling kinase) family genes revealed that BSKs participated in the response of cotton to abiotic stress and maintained the growth of cotton in extreme environment. The steroidal hormone brassinosteroids (BR) play important roles in different plant biological processes. This study focused on BSK which were downstream regulatory element of BR, in order to help to decipher the functions of BSKs genes from cotton on growth development and responses to abiotic stresses and lean the evolutionary relationship of cotton BSKs. BSKs are a class of plant-specific receptor-like cytoplasmic kinases involved in BR signal transduction. In this study, bioinformatics methods were used to identify the cotton BSKs gene family at the cotton genome level, and the gene structure, promoter elements, protein structure and properties, gene expression patterns and candidate interacting proteins were analyzed. In the present study, a total of 152 BSKs were identified by a genome-wide search in four cotton species and other 11 plant species, and phylogenetic analysis revealed three evolutionary clades. It was identified that BSKs contain typical PKc and TPR domains, the N-terminus is composed of extended chains and helical structures. Cotton BSKs genes show different expression patterns in different tissues and organs. The gene promoter contains numerous cis-acting elements induced by hormones and abiotic stress, the hormone ABA and Cold-inducing related elements have the highest count, indicating that cotton BSK genes may be regulated by various hormones at different growth stages and involved in the response regulation of cotton to various stresses. The expression analysis of BSKs in cotton showed that the expression levels of GhBSK06, GhBSK10, GhBSK21 and GhBSK24 were significantly increased with salt-inducing. This study is helpful to analyze the function of cotton BSKs genes in growth and development and in response to stress

    A high-fat diet catalyzes progression to hyperglycemia in mice with selective impairment of insulin action in Glut4-expressing tissues

    Get PDF
    Insulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in β-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies
    corecore