176 research outputs found

    Achievements and Challenges in Improving Air Quality in China: Analysis of the Long-Term Trends from 2014 to 2022

    Get PDF
    Due to the implementation of air pollution control measures in China, air quality has significantly improved, although there are still additional issues to be addressed. This study used the long-term trends of air pollutants to discuss the achievements and challenges in further improving air quality in China. The Kolmogorov-Zurbenko (KZ) filter and multiple-linear regression (MLR) were used to quantify the meteorology-related and emission-related trends of air pollutants from 2014 to 2022 in China. The KZ filter analysis showed that PM2.5 decreased by 7.36 ± 2.92% yr􀀀 1, while daily maximum 8-h ozone (MDA8 O3) showed an increasing trend with 3.71 ± 2.89% yr􀀀 1 in China. The decrease in PM2.5 and increase in MDA8 O3 were primarily attributed to changes in emission, with the relative contribution of 85.8% and 86.0%, respectively. Meteorology variations, including increased ambient temperature, boundary layer height, and reduced relative humidity, also contributed to the reduction of PM2.5 and the enhancement of MDA8 O3. The emission-related trends of PM2.5 and MDA8 O3 exhibited continuous decrease and increase, respectively, from 2014 to 2022, while the variation rates slowed during 2018–2020 compared to that during 2014–2017, highlighting the challenges in further improving air quality, particularly in simultaneously reducing PM2.5 and O3. This study recommends reducing NH3 emissions from the agriculture sector in rural areas and transport emissions in urban areas to further decrease PM2.5 levels. Addressing O3 pollution requires the reduction of O3 precursor gases based on site-specific atmospheric chemistry considerations

    Sex differences in patients with COVID-19: a retrospective cohort study and meta-analysis

    Get PDF
    BACKGROUND: Accumulated evidence revealed that male was much more likely to higher severity and fatality by SARS-CoV-2 infection than female patients, but few studies and meta-analyses have evaluated the sex differences of the infection and progression of COVID-19 patients. AIM: We aimed to compare the sex differences of the epidemiological and clinical characteristics in COVID-19 patients; and to perform a meta-analysis evaluating the severe rate, fatality rate, and the sex differences of the infection and disease progression in COVID-19 patients. METHODS: We analyzed clinical data of patients in Changchun Infectious Hospital and Center, Changchun, Northeast China; and searched PubMed, Embase, Web of Science, and Cochrane Library without any language restrictions for published articles that reported the data of sex-disaggregated, number of severe, and death patients on the confirmed diagnosis of adult COVID-19 patients. RESULTS: The pooled severe rate and fatality rate of COVID-19 were 22.7% and 10.7%. Male incidence in the retrospective study was 58.1%, and the pooled incidence in male was 54.7%. CONCLUSION: The pooled severe rate in male and female of COVID-19 was 28.2% and 18.8%, the risky of severe and death was about 1.6folds higher in male compared with female, especially for older patients (> 50 y)

    Osteogenic Enhancement Between Icariin and Bone Morphogenetic Protein 2: A Potential Osteogenic Compound for Bone Tissue Engineering

    Get PDF
    Icariin, a typical flavonol glycoside, is the main active component of Herba Epimedii, which was used to cure bone-related diseases in China for centuries. It has been reported that Icariin can be delivered locally by biomaterials and it has an osteogenic potential for bone tissue engineering. Biomimetic calcium phosphate (BioCaP) bone substitute is a novel drug delivery carrier system. Our study aimed to evaluate the osteogenic potential when Icariin was internally incorporated into the BioCaP granules. The BioCaP combined with Icariin and bone morphogenetic protein 2 (BMP-2) was investigated in vitro using an MC3T3-E1 cell line. We also investigated its efficacy to repair 8 mm diameter critical size bone defects in the skull of SD male rats. BioCaP was fabricated according to a well-established biomimetic mineralization process. In vitro, the effects of BioCaP alone or BioCaP with Icariin and/or BMP-2 on cell proliferation and osteogenic differentiation of MC3T3-E1 cells were systematically evaluated. In vivo, BioCaP alone or BioCaP with Icariin and/or BMP-2 were used to study the bone formation in a critical-sized bone defect created in a rat skull. Samples were retrieved for Micro-CT and histological analysis 12 weeks after surgery. The results indicated that BioCaP with or without the incorporation of Icariin had a positive effect on the osteogenic differentiation of MC3T3-E1. BioCaP with Icariin had better osteogenic efficiency, but had no influence on cell proliferation. BioCap + Icariin + BMP-2 showed better osteogenic potential compared with BioCaP with BMP-2 alone. The protein and mRNA expression of alkaline phosphatase and osteocalcin and mineralization were higher as well. In vivo, BioCaP incorporate internally with both Icariin and BMP-2 induced significantly more newly formed bone than the control group and BioCaP with either Icariin or BMP-2 did. Micro-CT analysis revealed that no significant differences were found between the bone mineral density induced by BioCaP with icariin and that induced by BioCaP with BMP-2. Therefore, co-administration of Icariin and BMP-2 was helpful for bone tissue engineering

    Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar

    Get PDF
    Although domestic cats (Felis silvestris catus) possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3), we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer cannot form, and thus the cat lacks the receptor likely necessary for detection of sweet stimuli. This molecular change was very likely an important event in the evolution of the cat's carnivorous behavior

    Polymorphisms in the Taste Receptor Gene (Tas1r3) Region are Associated with Saccharin Preference in 30 Mouse Strains.

    Get PDF
    The results of recent studies suggest that the mouse Sac (saccharin preference) locus is identical to the Tas1r3 (taste receptor) gene. The goal of this study was to identify Tas1r3 sequence variants associated with saccharin preference in a large number of inbred mouse strains. Initially, we sequenced approximately 6.7 kb of the Tas1r3 gene and its flanking regions from six inbred mouse strains with high and low saccharin preference, including the strains in which the Sac alleles were described originally (C57BL/6J, Sac(b); DBA/2J, Sac(d)). Of the 89 sequence variants detected among these six strains, eight polymorphic sites were significantly associated with preferences for 1.6 mm saccharin. Next, each of these eight variant sites were genotyped in 24 additional mouse strains. Analysis of the genotype-phenotype associations in all 30 strains showed the strongest association with saccharin preference at three sites: nucleotide (nt) -791 (3 bp insertion/deletion), nt +135 (Ser45Ser), and nt +179 (Ile60Thr). We measured Tas1r3 gene expression, transcript size, and T1R3 immunoreactivity in the taste tissue of two inbred mouse strains with different Tas1r3 haplotypes and saccharin preferences. The results of these experiments suggest that the polymorphisms associated with saccharin preference do not act by blocking gene expression, changing alternative splicing, or interfering with protein translation in taste tissue. The amino acid substitution (Ile60Thr) may influence the ability of the protein to form dimers or bind sweeteners. Here, we present data for future studies directed to experimentally confirm the function of these polymorphisms and highlight some of the difficulties of identifying specific DNA sequence variants that underlie quantitative trait loci

    Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    Get PDF
    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, because of the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, for example, Na0.44MnO2, were proposed, few negative electrode materials, for example, activated carbon and NaTi2(PO4)(3), are available. Here we show that Ti-substituted Na0.44MnO2 (Na-0.44[Mn1-xTix] O-2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/ charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na-0.44[Mn1-xTix]O-2 is a promising negative electrode material for aqueous sodium-ion batteries.

    An Olfactory Cilia Pattern in the Mammalian Nose Ensures High Sensitivity to Odors

    Get PDF
    SummaryIn many sensory organs, specialized receptors are strategically arranged to enhance detection sensitivity and acuity. It is unclear whether the olfactory system utilizes a similar organizational scheme to facilitate odor detection. Curiously, olfactory sensory neurons (OSNs) in the mouse nose are differentially stimulated depending on the cell location. We therefore asked whether OSNs in different locations evolve unique structural and/or functional features to optimize odor detection and discrimination. Using immunohistochemistry, computational fluid dynamics modeling, and patch clamp recording, we discovered that OSNs situated in highly stimulated regions have much longer cilia and are more sensitive to odorants than those in weakly stimulated regions. Surprisingly, reduction in neuronal excitability or ablation of the olfactory G protein in OSNs does not alter the cilia length pattern, indicating that neither spontaneous nor odor-evoked activity is required for its establishment. Furthermore, the pattern is evident at birth, maintained into adulthood, and restored following pharmacologically induced degeneration of the olfactory epithelium, suggesting that it is intrinsically programmed. Intriguingly, type III adenylyl cyclase (ACIII), a key protein in olfactory signal transduction and ubiquitous marker for primary cilia, exhibits location-dependent gene expression levels, and genetic ablation of ACIII dramatically alters the cilia pattern. These findings reveal an intrinsically programmed configuration in the nose to ensure high sensitivity to odors
    corecore