6 research outputs found
The Rice Pentatricopeptide Repeat Protein PPR756 Is Involved in Pollen Development by Affecting Multiple RNA Editing in Mitochondria.
In land plants, the pentatricopeptide repeat (PPR) proteins form a large family involved in post-transcriptional processing of RNA in mitochondria and chloroplasts, which is critical for plant development and evolutionary adaption. Although studies showed a number of PPR proteins generally influence the editing of organellar genes, few of them were characterized in detail in rice. Here, we report a PLS-E subclass PPR protein in rice, PPR756, loss of function of which led to the abolishment of RNA editing events among three mitochondrial genes includin
Genome-Wide Analysis of the Rice Gibberellin Dioxygenases Family Genes
Gibberellins (GAs), a pivotal plant hormone, play fundamental roles in plant development, growth, and stress response. In rice, gibberellin-dioxygenases (GAoxes) are involved in the biosynthesis and deactivation of gibberellins. However, a comprehensive genome-wide analysis of GA oxidases in rice was not uncovered. Here, a total of 80 candidate OsGAox genes were identified and 19 OsGAox genes were further analyzed. Studies on those 19 OsGAox genes, including phylogenetic tree construction, analysis of gene structure, exploration of conserved motifs and expression patterns, were conducted. Results showed that the GAox genes in Arabidopsis and rice were divided into four subgroups and shared some common features. Analysis of gene structure and conserved motifs revealed that splicing phase and motifs were well conserved during the evolution of GAox genes in Arabidopsis and rice, but some special conserved motifs possessed unknown functions need to be further studied. Exploration of expression profiles from RNA-seq data indicated that each GAox gene had tissue-specific expression patterns, although they varied greatly. The expression patterns of these genes under GA3 treatment revealed that some genes, such as OsGA2ox1, OsGA2ox3, OsGA2ox4, OsGA2ox7, OsGA20ox1, and OsGA20ox4, may play a major role in regulating the level of bioactive GA. Taken together, our study provides a comprehensive analysis of the GAox gene family and will facilitate further studies on their roles in rice growth and development so that these genes can be better exploited
Genome-Wide Identification, Expansion Mechanism and Expression Profiling Analysis of GLABROUS1 Enhancer-Binding Protein (GeBP) Gene Family in Gramineae Crops
The GLABROUS1 enhancer-binding protein (GeBP) gene family encodes a typical transcription factor containing a noncanonical Leucine (Leu-)-zipper motif that plays an essential role in regulating plant growth and development, as well as responding to various stresses. However, limited information on the GeBP gene family is available in the case of the Gramineae crops. Here, 125 GeBP genes from nine Gramineae crops species were phylogenetically classified into four clades using bioinformatics analysis. Evolutionary analyses showed that whole genome duplication (WGD) and segmental duplication play important roles in the expansion of the GeBP gene family. The various gene structures and protein motifs revealed that the GeBP genes play diverse functions in plants. In addition, the expression profile analysis of the GeBP genes showed that 13 genes expressed in all tested organs and stages of development in rice, with especially high levels of expression in the leaf, palea, and lemma. Furthermore, the hormone- and metal-induced expression patterns showed that the expression levels of most genes were affected by various biotic stresses, implying that the GeBP genes had an important function in response to various biotic stresses. Furthermore, we confirmed that OsGeBP11 and OsGeBP12 were localized to the nucleus through transient expression in the rice protoplast, indicating that GeBPs function as transcription factors to regulate the expression of downstream genes. This study provides a comprehensive understanding of the origin and evolutionary history of the GeBP genes family in Gramineae, and will be helpful in a further functional characterization of the GeBP genes
Phosphorylation of Caspase-8 (Thr-263) by Ribosomal S6 Kinase 2 (RSK2) Mediates Caspase-8 Ubiquitination and Stability*
The ribosomal S6 kinase 2 (RSK2) is a member of the p90 ribosomal S6 kinase (p90RSK) family of proteins and plays a critical role in proliferation, cell cycle, and cell transformation. Here, we report that RSK2 phosphorylates caspase-8, and Thr-263 was identified as a novel caspase-8 phosphorylation site. In addition, we showed that EGF induces caspase-8 ubiquitination and degradation through the proteasome pathway, and phosphorylation of Thr-263 is associated with caspase-8 stability. Finally, RSK2 blocks Fas-induced apoptosis through its phosphorylation of caspase-8. These data provide a direct link between RSK2 and caspase-8 and identify a novel molecular mechanism for caspase-8 modulation by RSK2