165,982 research outputs found
Analysis of the Movement of Chlamydomonas Flagella: The Function of the Radial-spoke System Is Revealed by Comparison of Wild-type and Mutant Flagella
The mutation uni-1 gives rise to uniflagellate Chlamydomonas cells which rotate around a fixed point in the microscope field, so that the flagellar bending pattern can be photographed easily . This has allowed us to make a detailed analysis of the wild-type flagellar bending pattern and the bending patterns of flagella on several mutant strains. Cells containing uni-1, and recombinants of uni-1 with the suppressor mutations, sup(_pf)-1 and sup(_pf)-3, show the typical asymmetric bending pattern associated with forward swimming in Chlamydomonas,
although sup(_pf)-1 flagella have about one-half the normal beat frequency, apparently as the result of defective function of the outer dynein arms. The pf-17 mutation has been shown to produce nonmotile flagella in which radial spoke heads and five characteristic axonemal
polypeptides are missing. Recombinants containing pf-17 and either sup(_pf)-1 or sup(_pf)-3 have
motile flagella, but still lack radial-spoke heads and the associated polypeptides . The flagellar
bending pattern of these recombinants lacking radial-spoke heads is a nearly symmetric, large
amplitude pattern which is quite unlike the wild-type pattern . However, the presence of an
intact radial-spoke system is not required to convert active sliding into bending and is not
required for bend initiation and bend propagation, since all of these processes are active in the
sup(_pf) pf-17 recombinants. The function of the radial-spoke system appears to be to convert the
symmetric bending pattern displayed by these recombinants into the asymmetric bending
pattern required for efficient swimming, by inhibiting the development of reverse bends during
the recovery phase of the bending cycle
Dirac cohomology, elliptic representations and endoscopy
The first part (Sections 1-6) of this paper is a survey of some of the recent
developments in the theory of Dirac cohomology, especially the relationship of
Dirac cohomology with (g,K)-cohomology and nilpotent Lie algebra cohomology;
the second part (Sections 7-12) is devoted to understanding the unitary
elliptic representations and endoscopic transfer by using the techniques in
Dirac cohomology. A few problems and conjectures are proposed for further
investigations.Comment: This paper will appear in `Representations of Reductive Groups, in
Honor of 60th Birthday of David Vogan', edited by M. Nervins and P. Trapa,
published by Springe
I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis
Revelations of large scale electronic surveillance and data mining by
governments and corporations have fueled increased adoption of HTTPS. We
present a traffic analysis attack against over 6000 webpages spanning the HTTPS
deployments of 10 widely used, industry-leading websites in areas such as
healthcare, finance, legal services and streaming video. Our attack identifies
individual pages in the same website with 89% accuracy, exposing personal
details including medical conditions, financial and legal affairs and sexual
orientation. We examine evaluation methodology and reveal accuracy variations
as large as 18% caused by assumptions affecting caching and cookies. We present
a novel defense reducing attack accuracy to 27% with a 9% traffic increase, and
demonstrate significantly increased effectiveness of prior defenses in our
evaluation context, inclusive of enabled caching, user-specific cookies and
pages within the same website
Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines
We show that pulse shaping techniques can be applied to tailor the ultrafast
temporal response of the strongly confined and enhanced optical near fields in
the feed gap of resonant optical antennas (ROAs). Using finite-difference
time-domain (FDTD) simulations followed by Fourier transformation, we obtain
the impulse response of a nano structure in the frequency domain, which allows
obtaining its temporal response to any arbitrary pulse shape. We apply the
method to achieve deterministic optimal temporal field compression in ROAs with
reduced symmetry and in a two-wire transmission line connected to a symmetric
dipole antenna. The method described here will be of importance for experiments
involving coherent control of field propagation in nanophotonic structures and
of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure
Segue Between Favorable and Unfavorable Solvation
Solvation of small and large clusters are studied by simulation, considering
a range of solvent-solute attractive energy strengths. Over a wide range of
conditions, both for solvation in the Lennard-Jones liquid and in the SPC model
of water, it is shown that the mean solvent density varies linearly with
changes in solvent-solute adhesion or attractive energy strength. This behavior
is understood from the perspective of Weeks' theory of solvation [Ann. Rev.
Phys. Chem. 2002, 53, 533] and supports theories based upon that perspective.Comment: 8 pages, 7 figure
Resonant elastic soft x-ray scattering in oxygen-ordered YBa_2Cu_3O_{6+delta}
Static charge-density wave (CDW) and spin-density wave (SDW) order has been
convincingly observed in La-based cuprates for some time. However, more
recently it has been suggested by quantum oscillation, transport and
thermodynamic measurements that density wave order is generic to underdoped
cuprates and plays a significant role in YBa_2Cu_3O_{6+delta} (YBCO). We use
resonant soft x-ray scattering at the Cu L and O K edges to search for evidence
of density wave order in Ortho-II and Ortho-VIII oxygen-ordered YBCO. We report
a null result -- no evidence for static CDW order -- in both Ortho-II and
Ortho-VIII ordered YBCO. While this does not rule out static CDW order in the
CuO_2 planes of YBCO, these measurements place limits on the parameter space
(temperature, magnetic field, scattering vector) in which static CDW order may
exist. In addition, we present a detailed analysis of the energy and
polarization dependence of the Ortho-II superstructure Bragg reflection [0.5 0
0] at the Cu L edge. The intensity of this peak, which is due to the valence
modulations of Cu in the chain layer, is compared with calculations using
atomic scattering form factors deduced from x-ray absorption measurements. The
calculated energy and polarization dependence of the scattering intensity is
shown to agree very well with the measurement, validating the approach and
providing a framework for analyzing future resonant soft x-ray scattering
measurements.Comment: 11 pages, 9 figure
Magneto-controlled nonlinear optical materials
We exploit theoretically a magneto-controlled nonlinear optical material
which contains ferromagnetic nanoparticles with a non-magnetic metallic
nonlinear shell in a host fluid. Such an optical material can have anisotropic
linear and nonlinear optical properties and a giant enhancement of
nonlinearity, as well as an attractive figure of merit.Comment: 11 pages, 2 figures. To be published in Appl. Phys. Let
- …