150 research outputs found

    Stellar color regression: a spectroscopy based method for color calibration to a few mmag accuracy and the recalibration of Stripe 82

    Full text link
    In this paper, we propose a spectroscopy based Stellar Color Regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the SDSS Stripe 82 data (Ivezic et al; I07 hereafter). With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero point errors present in the photometric catalog of Stripe 82, and improve the color calibration by a factor of 2 -- 3. Our study also reveals some small but significant magnitude dependence errors in z-band for some CCDs. Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by I07. The comparison as well as other tests shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u-g, 3 mmag in g-r, and 2 mmag in r-i and i-z, respectively. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, on-going, and up-coming imaging surveys.Comment: 17 pages, 14 figures, 3 tables, ApJ in pres

    Solid fat content and bakery characteristics of interesterified beef tallow-palm mid fraction based margarines

    Get PDF
    Palm mid fraction (PMF) was interesterified with edible beef tallow (BT) catalyzed using sodium methoxide to investigate the effects on the solid fat content (SFC) of these palmitic rich plastic fats. Interesterified blends crystallize more slowly than BT. Conversely, the crystallization rates of PMF-BT-based interesterification (IE) products were compared with the starting mixture and IE products prepared with non-PMF triglycerides. The SFC PMF-based IE products increased significantly at temperatures between 25 and 40 °C. The SFC profiles became smoother and the products had potential to serve as base oils for preparing specialty fats with a wider range of plasticity. Further exploration of triacylglycerol (TAG) compositional changes revealed that PMF interesterified products had greater saturated/saturated/saturated (S/S/S)-type TAGs compared with soybean oil interesterified products. Moreover, in subsequent evaluations of BT-PMF-based IE fats as a margarine replacement effects in a baked cake model system showed that the material was a suitable functional oil base with acceptable aeration properties and plasticity during baking. Therefore, it is a potential alternative to IE-BT based and traditional IE-BT-palm oil based margarines. The physical-characteristics of bakery products prepared with this fat exhibited improved cake volume with fine structure and clear lifting properties, which affirmed the potential for its application in bakery fats

    Challenges and Strategies for High‐Energy Aqueous Electrolyte Rechargeable Batteries

    Get PDF
    Aqueous rechargeable batteries are becoming increasingly important to the development of renewable energy sources, because they promise to meet cost‐efficiency, energy and power demands for stationary applications. Over the past decade, efforts have been devoted to the improvement of electrode materials and their use in combination with highly concentrated aqueous electrolytes. Here the latest ground‐breaking advances in using such electrolytes to construct aqueous battery systems efficiently storing electrical energy, i.e., offering improved energy density, cyclability and safety, are highlighted. This Review aims to timely provide a summary of the strategies proposed so far to overcome the still existing hurdles limiting the present aqueous batteries technologies employing concentrated electrolytes. Emphasis is placed on aqueous batteries for lithium and post‐lithium chemistries, with potentially improved energy density, resulting from the unique advantages of concentrated electrolytes

    Layered Oxide Material as a Highly Stable Na‐ion Source and Sink for Investigation of Sodium‐ion Battery Materials

    Get PDF
    Investigating Na-ion battery (SIB) materials is complicated by the absence of a well-performing (reference) electrode material since sodium metal cannot be considered as a quasi-reference electrode. Taking advantage of the activity of both Ni and Mn, herein, the P2-type and Mn-rich Na0.6_{0.6}Ni0.22_{0.22}Al0.11_{0.11}Mn0.66_{0.66}O2_2 (NAM) material, known to be an excellent positive electrode, is investigated as a negative electrode. To prove NAM stability as both positive and negative electrode, symmetric cells have been assembled without pre-sodiation, which showed a reversible capacity of 73 mA h g1^{−1} and a remarkable capacity retention of 82.6 % after 500 cycles. The outstanding cycling performance is ascribed to the high stability of the active material at both the highest and lowest Na-ion storage plateaus and the rather limited electrolyte decomposition and solid-electrolyte-interphase (SEI) formation occurring. The long-term stability of NAM at both electrodes enables its use as a “reference” electrode for the investigation of other positive and negative electrode materials for SIBs, resembling the role played by lithium titanate (LTO) and lithium iron phosphate (LFP) in LIBs

    Solvent-Dictated Sodium Sulfur Redox Reactions: Investigation of Carbonate and Ether Electrolytes

    Get PDF
    Sulfur-based cathode chemistries are essential for the development of high energy density alkali-ion batteries. Here, we elucidate the redox kinetics of sulfur confined on carbon nanotubes, comparing its performance in ether-based and carbonate-based electrolytes at room temperature. The solvent is found to play a key role for the electrochemical reactivity of the sulfur cathode in sodium–sulfur (Na–S) batteries. Ether-based electrolytes contribute to a more complete reduction of sulfur and enable a higher electrochemical reversibility. On the other hand, an irreversible solution-phase reaction is observed in carbonate solvents. This study clearly reveals the solvent-dependent Na–S reaction pathways in room temperature Na–S batteries and provides an insight into realizing their high energy potential, via electrolyte formulation design

    Electrolyte Strategies Facilitating Anion‐Derived Solid‐Electrolyte Interphases for Aqueous Zinc–Metal Batteries

    Get PDF
    Rechargeable aqueous zinc–metal batteries (AZBs) are a promising complimentary technology to the existing lithium-ion batteries and the re-emerging lithium–metal batteries to satisfy the increasing demands on energy storage. Despite considerable progress achieved in the past years, the fundamental understanding of the solid-electrolyte interphase (SEI) formation and how its composition influences the SEI properties are limited. This review highlights the functionalities of anion-tuned SEI on the reversibility of zinc–metal anode, with a specific emphasis on new structural insights obtained through advanced characterizations and computational techniques. Recent efforts in terms of key variables that govern the interfacial behaviors to improve the long-term stability of zinc anode, i.e., Coulombic efficiency, plating morphology, dendrite formation, and side-reactions, are comprehensively reviewed. Lastly, the remaining challenges and future perspectives are presented, providing insights into the rational design of practical high-performance AZBs
    corecore