9 research outputs found

    The roles of divergent and parallel molecular evolution contributing to thermal adaptive strategies in trees

    Get PDF
    Local adaptation is a driver of biological diversity, and species may develop analogous (parallel evolution) or alternative (divergent evolution) solutions to similar ecological challenges. We expect these adaptive solutions would culminate in both phenotypic and genotypic signals. Using two Eucalyptus species (Eucalyptus grandis and Eucalyptus tereticornis) with overlapping distributions grown under contrasting ā€˜localā€™ temperature conditions to investigate the independent contribution of adaptation and plasticity at molecular, physiological and morphological levels. The link between gene expression and traits markedly differed between species. Divergent evolution was the dominant pattern driving adaptation (91% of all significant genes); but overlapping gene (homologous) responses were dependent on the determining factor (plastic, adaptiveƂĀ or genotype by environment interaction). Ninety-eightƂĀ percent of the plastic homologs were similarly regulated, while 50% of the adaptive homologs and 100% of the interaction homologs were antagonistical. Parallel evolution for the adaptive effect in homologous genes was greater than expected but not in favour of divergent evolution. Heat shock proteins for E. grandis were almost entirely driven by adaptation, and plasticity in E. tereticornis. These results suggest divergent molecular evolutionary solutions dominated the adaptive mechanisms among species, even in similar ecological circumstances. Suggesting that tree species with overlapping distributions are unlikely to equally persist in the future

    Climate Change Impacts on Genetically Differentiated Telopea speciosissima (NSW Waratah) Coastal and Upland Populations

    No full text
    Intraspeciļ¬c variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2](CE) and elevated temperature (TE) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE. We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspeciļ¬c variation in physiological plasticity was detected under CE or TE, and the interactive effects of CE and TE on intraspeciļ¬c variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes

    Dry mass production, allocation patterns and water use efficiency of two conifers with different water use strategies under elevated [COā‚‚], warming and drought conditions

    No full text
    Knowledge regarding the interactive effects of elevated [CO2], warming and drought on dry mass production, allocation and water use efficiency (WUE) of tree seedlings is limited, particularly in trees exhibiting different stomatal regulation strategies. Seedlings of Callitris rhomboidea (relatively anisohydric) and Pinus radiata (relatively isohydric) were grown in two [CO2] (Ca (400 Āµmol molāˆ’1) and Ce (640 Āµmol molāˆ’1)) and two temperature (Ta (ambient) and Te (ambient + 4 ƂĀ°C)) treatments in a sun-lit glasshouse under well-watered conditions prior to imposition of the drought. Ce increased mass production in C. rhomboidea (but not in P. radiata), while drought limited mass production in both species. Mass production was greatest in the combination of Ce, Te and well-watered conditions. Pinus radiata allocated relatively more dry mass into roots and had higher plant WUE than C. rhomboidea. Noticeably, mass allocation patterns in C. rhomboidea varied as a function of the treatments, but those of P. radiata were constant. Ce enhanced leaf WUE of both species, but to a greater degree under drought stress than well-watered conditions. Moderate drought stress increased both leaf and plant WUE compared to well-watered conditions. C. rhomboidea exhibited plasticity to variable climate conditions through morphological adjustments, while P. radiata exhibited a highly conservative strategy. Collectively, these findings indicate that the two species have different strategies in resource acquisition and utilisation under changing environmental conditions. Future studies on tree response to climate change need to fully consider the integration of species traits, including stomatal behaviour and hydraulic strategies

    Should exotic Eucalyptus be planted in subtropical China : insights from understory plant diversity in two contrasting Eucalyptus chronosequences

    No full text
    Although Eucalyptus is widely planted in South China, whose effects on native biodiversity are unclear. The objective of this study was to quantify the richness and composition of understory plants in two contrasting Eucalyptus chronosequences in South China. One was in Zhangzhou City with plantation age of 2, 4, and 6 years after clear-cutting Chinese fir forests, while the other was in Heshan City with plantation age of 2, 3, and 24 years that reforested on barren lands. Results showed that the richness of understory plants and functional groups was not significantly altered in the Zhangzhou chronosequence, while increased in the 24-year-old plantations, with a significantly larger proportion of woody plants than the younger plantations for the Heshan chronosequence. Moreover, a higher richness of woody plants accompanied by a lower richness of herbaceous species was detected in the Zhangzhou chronosequence compared with the Heshan one. To balance the need for pulp production and plant diversity conservation, we suggest that intercropping approaches between exotic Eucalyptus plantations and native forests should be considered in the fast rotation Eucalyptus plantations. However, Eucalyptus plantations may be used as pioneer species to sustain ecosystem functioning for the degraded lands

    Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest

    Get PDF
    Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8Ā years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m-2Ā year-1) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered. Nitrogen deposition may change above- and belowground biological communities. Our results indicate that N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered

    Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages

    No full text
    Reforested plantations have substantial effects on terrestrial carbon cycling due to their large coverage area. Although understory plants are important components of reforested plantations, their effects on ecosystem carbon dynamics remain unclear. This study was designed to investigate the effects of vegetation removal/understory removal and tree girdling on soil respiration and ecosystem carbon dynamics in Eucalyptus plantations of South China with contrasting ages (2 and 24 years old). We conducted a field manipulation experiment from 2008 to 2009. Understory removal reduced soil respiration in both plantations, whereas tree girdling decreased soil respiration only in the 2-year-old plantations. The net ecosystem production was approximately three times greater in the 2-year-old plantations (13.4 -1 yr -1) than in the 24-year-old plantations (4.2 -1 yr -1). The biomass increase of understory plants was 12.6-1 yr -1 in the 2-year-old plantations and 2.9 -1 yr -1 in the 24-year-old plantations, accounting for 33.9% and 14.1% of the net primary production, respectively. Our findings confirm the ecological importance of understory plants in subtropical plantations based on the 2 years of data. These results also indicate that Eucalyptus plantations in China may be an important carbon sink due to the large plantation area

    Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings

    No full text
    It has been reported that elevated temperature accelerates the time-to-mortality in plants exposed to prolonged drought, while elevated [CO2] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO2] and temperature on the inter-dependent carbon and hydraulic characteristics associated with drought-induced mortality in Eucalyptus radiata seedlings grown in two [CO2] (400 and 640Ī¼L L-1) and two temperature (ambient and ambient +4Ā°C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO2] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO2], may be the primary contributors to drought-induced seedling mortality under future climates. To date, very few studies have investigated drought-induced mortality as a function of two key global change factors (i.e. rising [CO2] and temperature), particularly with the respect to their interaction. In this manuscript, we addressed the main and interactive impacts of elevated [CO2] and temperature on tree seedling response to drought and mechanisms associated with drought-induced mortality in Eucalyptus radiata seedlings. We found that elevated temperature treatments triggered more rapid mortality than ambient temperature treatments, and were associated with increased drought sensitivities of gas exchange traits and earlier substantial xylem cavitation. Elevated [CO2] had a negligible effect on drought responses, and did not ameliorate the negative effects of elevated temperature on drought stress

    Effects of light irradiance on stomatal regulation and growth of tomato

    No full text
    Light is not only a primary energy source for photosynthesis but also a vital regulator of numerous processes in plants. However, high light intensity always poses a dilemma for plants: to grow or to suffer. Combining physiological techniques at plant, tissue, and cellular levels, we investigated the regulation of stomatal behaviour and cytosolic Ca2+ concentration ([Ca2+]cyt) on growth of tomato plants under different light irradiance. Overall, plants exhibited a distinct short-term (days) and a long-term (weeks) response to high light by significantly increasing shoot biomass, leaf number, leaf temperature, vapour pressure deficit, stomatal index, aperture length and guard cell length. However, most physiological parameters were significantly reduced upon high light treatment, indicating a strong negative impact of high light on photosynthesis and stomatal opening. For instance, Short- and long-term exposure to high light significantly reduced stomatal aperture width by 31.7% and 46.3%, respectively. Moreover, high light treatments significantly decreased [Ca2+]cyt from 252Ā±39 to 52Ā±16nM in stomatal guard cells. Aperture width, guard cell width and stomatal index were the parameters that highly significantly correlated to photosynthesis and growth of tomato plants (P<0.01) followed by aperture width/length, guard cell volume and stomatal density. These causal links revealed some insights into the fine-regulation of stomata on plant performance despite some non-stomatal factors. Therefore, stomatal parameters including aperture width/length, guard cell width, stomatal density and index and [Ca2+]cyt could be employed as physiological markers for fast and effective assessment of performance of tomato plants

    Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature

    No full text
    Future climate regimes characterized by rising [CO2], rising temperatures and associated droughts may differentially affect tree growth and physiology. However, the interactive effects of these three factors are complex because elevated [CO2] and elevated temperature may generate differential physiological responses during drought. To date, the interactive effects of elevated [CO2] and elevated temperature on drought-induced tree mortality remain poorly understood in gymnosperm species that differ in stomatal regulation strategies. Water relations and carbon dynamics were examined in two species with contrasting stomatal regulation strategies: Pinus radiata D. Don (relatively isohydric gymnosperm; regulating stomata to maintain leaf water potential above critical thresholds) and Callitris rhomboidea R. Br (relatively anisohydric gymnosperm; allowing leaf water potential to decline as the soil dries), to assess response to drought as a function of [CO2] and temperature. Both species were grown in two [CO2] (Ca (ambient, 400 Ī¼l lāˆ’1) and Ce (elevated, 640 Ī¼l lāˆ’1)) and two temperature (Ta (ambient) and Te (ambient +4 Ā°C)) treatments in a sun-lit glasshouse under well-watered conditions. Drought plants were then exposed to a progressive drought until mortality. Prior to mortality, extensive xylem cavitation occurred in both species, but significant depletion of non-structural carbohydrates was not observed in either species. Te resulted in faster mortality in P. radiata, but it did not modify the time-to-mortality in C. rhomboidea. Ce did not delay the time-to-mortality in either species under drought or Te treatments. In summary, elevated temperature (+4 Ā°C) had greater influence than elevated [CO2] (+240 Ī¼l lāˆ’1) on drought responses of the two studied gymnosperm species, while stomatal regulation strategies did not generally affect the relative contributions of hydraulic failure and carbohydrate depletion to mortality under severe drought
    corecore