7 research outputs found

    Secondary Production of Gaseous Nitrated Phenols in Polluted Urban Environments

    Get PDF
    Nitrated phenols (NPs) are important atmospheric pollutants that affect air quality, radiation, and health. The recent development of the time-of-flight chemical ionization mass spectrometer (ToF-CIMS) allows quantitative online measurements of NPs for a better understanding of their sources and environmental impacts. Herein, we deployed nitrate ions as reagent ions in the ToF-CIMS and quantified six classes of gaseous NPs in Beijing. The concentrations of NPs are in the range of 1 to 520 ng m(-3). Nitrophenol (NPh) has the greatest mean concentration. Dinitrophenol (DNP) shows the greatest haze-to-clean concentration ratio, which may be associated with aqueous production. The high concentrations and distinct diurnal profiles of NPs indicate a strong secondary formation to overweigh losses, driven by high emissions of precursors, strong oxidative capacity, and high NOx levels. The budget analysis on the basis of our measurements and box-model calculations suggest a minor role of the photolysis of NPs (Peer reviewe

    Secondary Organic Aerosol Formation of Fleet Vehicle Emissions in China: Potential Seasonality of Spatial Distributions

    No full text
    Vehicle emissions are an important source of urban particular matter. To investigate the secondary organic aerosol (SOA) formation potential of real-world vehicle emissions, we exposed on-road air in Beijing to hydroxyl radicals generated in an oxidation flow reactor (OFR) under high-NOx conditions on-board a mobile laboratory and characterized SOA and their precursors with a suite of state-of-the-art instrumentation. The OFR produced 10-170 mu g m(-3) of SOA with a maximum SOA formation potential of 39-50 mu g m(-3) ppmv(-1) CO that occurred following an integrated OH exposure of (1.3-2.0) x 10(11) molecules cm(-3) s. The results indicate relatively shorter photochemical ages for maximum SOA production than previous OFR results obtained under low-NOx conditions. Such timescales represent the balance of functionalization and fragmentation, possibly resulting in different spatial distributions of SOA in different seasons as the oxidant level changes. The detected precursors may explain as much as 13% of the observed SOA with the remaining plausibly contributed by the oxidation of undetected intermediate-volatility organic compounds. Extrapolation of the results suggests an annual SOA production rate of 0.78 Tg yr(-1) from mobile gasoline sources in China, highlighting the importance of effective regulation of gaseous vehicular precursors to improve air quality in the future

    Field investigation combined with modeling uncovers the ecological heterogeneity of Aedes albopictus habitats for strategically improving systematic management during urbanization

    No full text
    Abstract Background Aedes albopictus is an invasive vector of serious Aedes-borne diseases of global concern. Habitat management remains a critical factor for establishing a cost-effective systematic strategy for sustainable vector control. However, the community-based characteristics of Ae. albopictus habitats in complex urbanization ecosystems are still not well understood. Methods A large-scale investigation of aquatic habitats, involving 12 sites selected as representative of four land use categories at three urbanization levels, was performed in Guangzhou, China during 2015–2017. The characteristics and dynamics of these Ae. albopictus habitats were assessed using habitat-type composition, habitat preference, diversity indexes and the Route index (RI), and the temporal patterns of these indexes were evaluated by locally weighted scatterplot smoothing models. The associations of RI with urbanization levels, land use categories and climatic variables were inferred using generalized additive mixed models. Results A total of 1994 potential habitats and 474 Ae. albopictus-positive habitats were inspected. The majority of these habitats were container-type habitats, with Ae. albopictus showing a particularly higher habitat preference for plastic containers, metal containers and ceramic vessels. Unexpectedly, some non-container-type habitats, especially ornamental ponds and surface water, were found to have fairly high Ae. albopictus positivity rates. Regarding habitats, the land use category residential and rural in Jiangpu (Conghua District, Guangzhou) had the highest number of Ae. albopictus habitats with the highest positive rates. The type diversity of total habitats (H-total) showed a quick increase from February to April and peaked in April, while the H-total of positive habitats (H-positive) and RIs peaked in May. RIs mainly increased with the monthly average daily mean temperature and monthly cumulative rainfall. We also observed the accumulation of diapause eggs in the winter and diapause termination in the following March. Conclusions Ecological heterogeneity of habitat preferences of Ae. albopictus was demonstrated in four land use categories at three urbanization levels. The results reveal diversified habitat-type compositions and significant seasonal variations, indicating an ongoing adaptation of Ae. albopictus to the urbanization ecosystem. H-positivity and RIs were inferred as affected by climatic variables and diapause behavior of Ae. albopictus, suggesting that an effective control of overwintering diapause eggs is crucial. Our findings lay a foundation for establishing a stratified systematic management strategy of Ae. albopictus habitats in cities that is expected to complement and improve community-based interventions and sustainable vector management. Graphical Abstrac
    corecore