24,631 research outputs found

    Recovering information of tunneling spectrum from Weakly Isolated Horizon

    Get PDF
    In this paper we investigate the properties of tunneling spectrum from weakly isolated horizon(WIH). We find that there are correlations among Hawking radiations from weakly isolated horizon, the information can be carried out in terms of correlations between sequential emissions, and the radiation is an entropy conservation process. We generalize Refs.[11-13]' results to a more general spacetime. Through revisiting the calculation of tunneling spectrum of weakly isolated horizon, we find that Ref.[12]'s requirement that radiating particles have the same angular momenta of unit mass as that of black hole is not needed, and the energy and angular momenta of emitting particles are very arbitrary which should be restricted only by keeping the cosmic censorship of black hole

    Interaction-aware Factorization Machines for Recommender Systems

    Full text link
    Factorization Machine (FM) is a widely used supervised learning approach by effectively modeling of feature interactions. Despite the successful application of FM and its many deep learning variants, treating every feature interaction fairly may degrade the performance. For example, the interactions of a useless feature may introduce noises; the importance of a feature may also differ when interacting with different features. In this work, we propose a novel model named \emph{Interaction-aware Factorization Machine} (IFM) by introducing Interaction-Aware Mechanism (IAM), which comprises the \emph{feature aspect} and the \emph{field aspect}, to learn flexible interactions on two levels. The feature aspect learns feature interaction importance via an attention network while the field aspect learns the feature interaction effect as a parametric similarity of the feature interaction vector and the corresponding field interaction prototype. IFM introduces more structured control and learns feature interaction importance in a stratified manner, which allows for more leverage in tweaking the interactions on both feature-wise and field-wise levels. Besides, we give a more generalized architecture and propose Interaction-aware Neural Network (INN) and DeepIFM to capture higher-order interactions. To further improve both the performance and efficiency of IFM, a sampling scheme is developed to select interactions based on the field aspect importance. The experimental results from two well-known datasets show the superiority of the proposed models over the state-of-the-art methods

    Reliable Energy-Efficient Routing Algorithm for Vehicle-Assisted Wireless Ad-Hoc Networks

    Full text link
    We investigate the design of the optimal routing path in a moving vehicles involved the internet of things (IoT). In our model, jammers exist that may interfere with the information exchange between wireless nodes, leading to worsened quality of service (QoS) in communications. In addition, the transmit power of each battery-equipped node is constrained to save energy. We propose a three-step optimal routing path algorithm for reliable and energy-efficient communications. Moreover, results show that with the assistance of moving vehicles, the total energy consumed can be reduced to a large extend. We also study the impact on the optimal routing path design and energy consumption which is caused by path loss, maximum transmit power constrain, QoS requirement, etc.Comment: 6 pages, 5 figures, rejected by IEEE Globecom 2017,resubmit to IEEE WCNC 201
    • …
    corecore