44 research outputs found

    Modeling and Optimizing High Pressure Liquid Chromatography (HPLC) Columns for the Separation of Biopharmaceuticals

    Full text link
    One of the most critical steps in the production of pharmaceuticals is the separation of the desired compound from reaction byproducts and environmental contaminants. Among the most sensitive of these methods is High Pressure Liquid Chromatography (HPLC), in which an initial mixture of compounds is forced by high pressure fluid flow through a column packed with a porous solid medium. Size and charge interactions with the solid phase cause the compounds to elute at different times from the column. The performance of an HPLC column is highly dependent on properties such as the length, ambient temperature, inlet pressure, and solid medium porosity. The ideal parameters are conventionally determined by purchasing and physically testing a series of columns, which can be prohibitive in cost, time, and materials. Thus there currently exists a pressing need for computer models to simulate the separation of two or more compounds in order to expedite the onerous process of physical optimization. This study sought to simulate the physical phenomena that underlie the elution process in an HPLC column, and optimize the conditions such that species separation and purity are maximized. The computing software COMSOL was used to model the involved physics, which comprised the flow of a mobile phase through a porous matrix, modeled by the Navier-Stokes Brinkman equation; the diffusion and dispersion of two solutes in the matrix, modeled by the general mass transfer equation; and the effect of external heating on the materials’ behavior, modeled by the general heat equation. The geometry of the HPLC column consisted of an axisymmetric two-dimensional tube filled with a uniformly distributed porous matrix. This model column was evaluated by simulating the separation of creatine and creatinine, two closely-related molecules involved in muscle tissue energetics. Once the model was tailored to a high degree of accuracy in comparison with experimental data, the column and species parameters were optimized. The optimal geometry for the separation of creatine and creatinine by HPLC, was a column of diameter 1.05 mm and length 78.4 mm, with a packed bed of spherical particles 5 µm in diameter. The optimal column temperature for this particular situation was found to be lower, at 15℃, as this slightly increases peak resolution but also elution time. Though concentration plots derived from this model corroborated experimental elution absorbance plots with relatively high fidelity, lingering issues remain, including the unexpectedly small influence of temperature on elution characteristics. Future models may seek to correct this calculation error by including a less steep concentration gradient at the inlet at initial time points. Additionally, variations in column heating were found to have a very small effect on the diffusion of the solute bands, so the external temperature was excluded from the optimization process. The successful implementation of this model indicates that HPLC chromatography can be feasibly represented by computer modeling, and more specific models can reduce the time and material costs of extensive physical testing

    Silica-Lipid Hybrid Microparticles as Efficient Vehicles for Enhanced Stability and Bioaccessibility of Curcumin

    Get PDF
    Kurkumin je aktivni sastojak koji ima višestruku ulogu, no njegova je uporaba ograničena zbog slabe topljivosti u vodi i stabilnosti, a time i slabe biološke raspoloživosti. Stoga je svrha ovoga rada bila osmisliti kako zaobići ta ograničenja. Postupkom emulgiranja dobivena je nanoemulzija s kurkuminom, a nakon toga sušenjem u vakuumu hibridne mikročestice nanoemulzije u silicijevom dioksidu. Udjel kurkumina u nanoemulziji bio je (0,30±0,02) %, a u mikročesticama (0,67±0,02) %. FTIR i XDR analizom utvrđeno je da je kurkumin u mikročesticama inkapsuliran u poroznom amorfnom silicijevom dioksidu. Antioksidacijska aktivnost kurkumina in vitro nije se smanjila nakon inkapsulacije. Simulacijom probave in vitro utvrđeno je da je biološka raspoloživost kurkumina u nanoemulziji i mikročesticama bila veća nego u kontrolnom uzorku. Stabilnost mikročestica ostala je ista tijekom 6 tjedana skladištenja u mraku pri temperaturama od 4, 25 i 40 °C. Osim toga, pokazalo se da su pri izlaganju svjetlosti, mikročestice imale bolju kemijsku stabilnost od nanoemulzije. Pri koncentraciji nanoemulzije manjoj od 45 μg/mL preživljavanje stanica bilo je veće od 80 %. Stoga možemo zaključiti da mikročestice mogu poslužiti kao nosači kurkumina te poboljšati njegovu topljivost, stabilnost pri izlaganju svjetlosti te biološku raspoloživost.Curcumin is an active ingredient with multiple functions, but its application is often restricted due to its poor water solubility, weak stability, and consequently low bioaccessibility. Based on this, the aim of this work is to develop a new vehicle to overcome these restrictions. Here we developed a curcumin-loaded nanoemulsion and then curcumin-loaded silica-lipid hybrid microparticles through emulsification and vacuum drying, respectively. The loading of curcumin in the nanoemulsion and microparticles was (0.30±0.02) and (0.67±0.02) %, respectively. FTIR and XRD analyses of microparticles revealed that curcumin was encapsulated in porous, amorphous silica. In vitro antioxidant activities showed that the encapsulation would not affect the antioxidant activity of curcumin. In vitro simulated digestion indicated that nanoemulsion and microparticles had higher curcumin bioaccessibility than the control group. The storage stability of microparticles remained the same during 6 weeks in the dark at 4, 25 and 40 °C. Moreover, the microparticles had a better chemical stability than nanoemulsion under the light. The cell viability was over 80 % when the concentration of nanocarriers was less than 45 μg/mL. Hence, the microparticles could be a promising means to load curcumin and improve its solubility, light stability and bioaccessibilit

    Enhanced heating rate of black carbon above planetary boundary layer over megacities in summertime

    Get PDF
    The fast development of a secondary aerosol layer was observed over megacities in eastern Asia during summertime. Within three hours, from midday to early afternoon, the contribution of secondary aerosols above the planetary boundary layer (PBL) increased by a factor of 3-5, and the coatings on the black carbon (BC) also increased and enhanced its absorption efficiency by 50%. This tended to result from the intensive actinic flux received above the PBL which promoted the photochemical reactions. The absorption of BC could be further amplified by the strong reflection of solar radiation over the cloud top across the PBL. This enhanced heating effect of BC introduced by combined processes (intensive solar radiation, secondary formation and cloud reflection) may considerably increase the temperature inversion above the PBL. This mechanism should be considered when evaluating the radiative impact of BC, especially for the polluted regions receiving strong solar radiation

    Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood

    Get PDF

    Performance of Polydopamine Complex and Mechanisms in Wound Healing

    No full text
    Polydopamine (PDA) has been gradually applied in wound healing of various types in the last three years. Due to its rich phenol groups and unique structure, it can be combined with a variety of materials to form wound dressings that can be used for chronic infection, tissue repair in vivo and serious wound healing. PDA complex has excellent mechanical properties and self-healing properties, and it is a stable material that can be used for a long period of time. Unlike other dressings, PDA complexes can achieve both photothermal therapy and electro activity. In this paper, wound healing is divided into four stages: antibacterial, anti-inflammatory, cell adhesion and proliferation, and re-epithelialization. Photothermal therapy can improve the bacteriostatic rate and remove reactive oxygen species to inhibit inflammation. Electrical signals can stimulate cell proliferation and directional migration. With low reactive oxygen species (ROS) levels, inflammatory factors are down-regulated and growth factors are up-regulated, forming regular collagen fibers and accelerating wound healing. Finally, five potential development directions are proposed, including increasing drug loading capacity, optimization of drug delivery platforms, improvement of photothermal conversion efficiency, intelligent electroactive materials and combined 3D printing
    corecore