309 research outputs found

    Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry

    Full text link
    We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [C. Huang \emph{et al.} Phys.~Rev.~B \textbf{94} 085414.~(2016)]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.Comment: 9 pages, 2 figure

    Anomalous Nonlocal Resistance and Spin-charge Conversion Mechanisms in Two-Dimensional Metals

    Full text link
    We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. Firstly, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magnetic field. Secondly, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (Hanle effect) can be asymmetric under field reversal. Both features are produced by direct magnetoelectric coupling, which is possible in materials with broken inversion symmetry but was not included in previous spin diffusion theories of nonlocal transport. These effects can be used to identify the relative contributions of different spin-charge conversion mechanisms. They should be observable in adatom-functionalized graphene, and may provide the reason for discrepancies in recent nonlocal transport experiments on graphene.Comment: 5 pages, 3 figures, and Supplementary Materials, to appear in Phys. Rev. Let

    Control of Spin Diffusion and Suppression of the Hanle Effect by the Coexistence of Spin and Valley Hall Effects

    Full text link
    In addition to spin, electrons in many materials possess an additional pseudo-spin degree of freedom known as 'valley'. In materials where the spin and valley degrees of freedom are weakly coupled, they can be both excited and controlled independently. In this work, we study a model describing the interplay of the spin and valley Hall effects in such two-dimensional materials. We demonstrate the emergence of an additional longitudinal neutral current that is both spin and valley polarized. The additional neutral current allows to control the spin density by tuning the magnitude of the valley Hall effect. In addition, the interplay of the two effects can suppress the Hanle effect, that is, the oscillation of the nonlocal resistance of a Hall bar device with in-plane magnetic field. The latter observation provides a possible explanation for the absence of the Hanle effect in a number of recent experiments. Our work opens also the possibility to engineer the conversion between the valley and spin degrees of freedom in two-dimensional materials.Comment: 15 pages, 2 figure

    Graphene Electrodynamics in the presence of the Extrinsic Spin Hall Effect

    Full text link
    We extend the electrodynamics of two dimensional electron gases to account for the extrinsic spin Hall effect (SHE). The theory is applied to doped graphene decorated with a random distribution of absorbates that induce spin-orbit coupling (SOC) by proximity. The formalism extends previous semiclassical treatments of the SHE to the non-local dynamical regime. Within a particle-number conserving approximation, we compute the conductivity, dielectric function, and spin Hall angle in the small frequency and wave vector limit. The spin Hall angle is found to decrease with frequency and wave number, but it remains comparable to its zero-frequency value around the frequency corresponding to the Drude peak. The plasmon dispersion and linewidth are also obtained. The extrinsic SHE affects the plasmon dispersion in the long wavelength limit, but not at large values of the wave number. This result suggests an explanation for the rather similar plasmonic response measured in exfoliated graphene, which does not exhibit the SHE, and graphene grown by chemical vapor deposition, for which a large SHE has been recently reported. Our theory also lays the foundation for future experimental searches of SOC effects in the electrodynamic response of two-dimensional electron gases with SOC disorder.Comment: 12 pages, 4 figure

    Unconventional Metallic Magnetism: Non-analyticity and Sign-changing Behavior of Orbital Magnetization in ABC Trilayer Graphene

    Full text link
    We study an unique form of metallic ferromagnetism in which orbital moments surpasses the role of spin moments in shaping the overall magnetization. This system emerges naturally upon doping a topologically non-trivial Chern band in the recently identified quarter metal phase of rhombohedral trilayer graphene. Our comprehensive scan of the density-interlayer potential parameter space reveals an unexpected landscape of orbital magnetization marked by two sign changes and a line of singularities. The sign change originates from an intense Berry curvature concentrated close to the band-edge, and the singularity arises from a topological Lifshitz transition that transform a simply connected Fermi sea into an annular Fermi sea. Importantly, these variations occur while the groundstate order-parameter (i.e.~valley and spin polarization) remains unchanged. This unconventional relationship between the order parameter and magnetization markedly contrasts traditional spin ferromagnets, where spin magnetization is simply proportional to the groundstate spin polarization via the gyromagnetic ratio. We compute energy and magnetization curves as functions of collective valley rotation to shed light on magnetization dynamics and to expand the Stoner-Wohlfarth magnetization reversal model. We provide predictions on the magnetic coercive field that can be readily tested in experiments. Our results challenge established perceptions of magnetism, emphasising the important role of orbital moments in two-dimensional materials such as graphene and transition metal dichalcogenides, and in turn, expand our understanding and potential manipulation of magnetic behaviors in these systems.Comment: 4+8 page

    Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems

    Full text link
    We analyze chiral topological edge modes in a non-Hermitian variant of the 2D Dirac equation. Such modes appear at interfaces between media with different "masses" and/or signs of the "non-Hermitian charge". The existence of these edge modes is intimately related to exceptional points of the bulk Hamiltonians, i.e., degeneracies in the bulk spectra of the media. We find that the topological edge modes can be divided into three families ("Hermitian-like", "non-Hermitian", and "mixed"), these are characterized by two winding numbers, describing two distinct kinds of half-integer charges carried by the exceptional points. We show that all the above types of topological edge modes can be realized in honeycomb lattices of ring resonators with asymmetric or gain/loss couplings.Comment: 6 pages, 3 figures, and Supplementary Materials, to appear in Phys. Rev. Let

    Quasi-boson approximation yields accurate correlation energy in the 2D electron gas

    Full text link
    We report the successful adaptation of the quasi-boson approximation, a technique traditionally employed in nuclear physics, to the analysis of the two-dimensional electron gas. We show that the correlation energy estimated from this approximation agrees closely with the results obtained from quantum Monte Carlo simulations. Our methodology comprehensively incorporates the exchange self-energy, direct scattering, and exchange scattering for a particle-hole pair excited out of the mean-field groundstate within the equation-of-motion framework. The linearization of the equation of motion leads to a generalized-random-phase-approximation (gRPA) eigenvalue equation whose spectrum indicates that the plasmon dispersion remains unaffected by exchange effects, while the particle-hole continuum experiences a marked upward shift due to the exchange self-energy. Notably, the plasmon mode retains its collective nature within the particle-hole continuum, up to moderately short wavelength (q∼0.3kFq\sim 0.3 k_F at metallic density rs=4r_s=4). Using the gRPA excitation spectrum, we calculate the zero-point energy of the quasi-boson Hamiltonian, thereby approximating the correlation energy of the original Hamiltonian. This research highlights the potential and effectiveness of applying the quasi-boson approximation to the gRPA spectrum, a fundamental technique in nuclear physics, to extended condensed matter systems.Comment: 7 pages, 4 figure
    • …
    corecore