672 research outputs found

    Systematic {\em ab initio} study of the phase diagram of epitaxially strained SrTiO3_3

    Full text link
    We use density-functional theory with the local-density approximation to study the structural and ferroelectric properties of SrTiO3_3 under misfit strains. Both the antiferrodistortive (AFD) and ferroelectric (FE) instabilities are considered. The rotation of the oxygen octahedra and the movement of the atoms are fully relaxed within the constraint of a fixed in-plane lattice constant. We find a rich misfit strain-induced phase transition sequence and is obtained only when the AFD distortion is taken into account. We also find that compressive misfit strains induce ferroelectricity in the tetragonal low temperature phase only whilst tensile strains induce ferroelectricity in the orthorhombic phases only. The calculated FE polarization for both the tetragonal and orthorhombic phases increases monotonically with the magnitude of the strains. The AFD rotation angle of the oxygen octahedra in the tetragonal phase increases dramatically as the misfit strain goes from the tensile to compressive strain region whilst it decreases slightly in the orthorhombic (FO4) phase. This reveals why the polarization in the epitaxially strained SrTiO3_3 would be larger when the tensile strain is applied, since the AFD distortion is found to reduce the FE instability and even to completely suppress it in the small strain region. Finally, our analysis of the average polar distortion and the charge density distribution suggests that both the Ti-O and Sr-O layers contribute significantly to the FE polarization

    Using a microfluidic device for 1 ÎĽl DNA microarray hybridization in 500 s

    Get PDF
    This work describes a novel and simple modification of the current microarray format. It reduces the sample/reagent volume to 1 μl and the hybridization time to 500 s. Both 20mer and 80mer oligonucleotide probes and singly labeled 20mer and 80mer targets, representative of the T-cell acute lymphocytic leukemia 1 (TAL1) gene, have been used to elucidate the performance of this hybridization approach. In this format, called shuttle hybridization, a conventional flat glass DNA microarray is integrated with a PMMA microfluidic chip to reduce the sample and reagent consumption to 1/100 of that associated with the conventional format. A serpentine microtrench is designed and fabricated on a PMMA chip using a widely available CO(2) laser scriber. The trench spacing is compatible with the inter-spot distance in standard microarrays. The microtrench chip and microarray chip are easily aligned and assembled manually so that the microarray is integrated with a microfluidic channel. Discrete sample plugs are employed in the microchannel for hybridization. Flowing through the microchannel with alternating depths and widths scrambles continuous sample plug into discrete short plugs. These plugs are shuttled back and forth along the channel, sweeping over microarray probes while re-circulation mixing occurs inside the plugs. Integrating the microarrays into the microfluidic channel reduces the DNA–DNA hybridization time from 18 h to 500 s. Additionally, the enhancement of DNA hybridization reaction by the microfluidic device is investigated by determining the coefficient of variation (CV), the growth rate of the hybridization signal and the ability to discriminate single-base mismatch. Detection limit of 19 amol was obtained for shuttle hybridization. A 1 μl target was used to hybridize with an array that can hold 5000 probes

    Outcome of lung cancer patients with acute respiratory failure requiring mechanical ventilation

    Get PDF
    AbstractTo assess the weaning outcome of lung cancer patients with acute respiratory failure (ARF) requiring mechanical ventilation, we retrospectively analyzed the database of the respiratory intensive care unit at a university-affiliated tertiary care hospital.Charts were reviewed for cancer status, biochemistries before respiratory failure, causes of respiratory failure, acute physiology and chronic health evaluation (APACHE) III score, ventilatory settings, data recorded during spontaneous breathing, duration of ventilator days, and weaning outcome. Ninety-five consecutive respiratory failure events in 81 patients were recorded from January 1, 1995 through June 30, 1999.Twenty-six episodes ended with successful weaning (27.4%). Age, gender, and cancer status did not affect the weaning outcome. Serum albumin level, APACHE III score, highest fractional inspired O2 (FiO2) and highest positive end-expiratory pressure, organ failure, ability to shift to partial ventilatory support, and duration of mechanical ventilation could significantly influence the weaning outcome statistically. The overall hospital mortality rate was 85.2%.Our results suggested that lung cancer patients with ARF will have a better chance to wean if the initial APACHE III score was less than 70, use of FiO2 never exceeded 0.6, or less than 2 additional organ systems failed during the treatment course

    Chatter Identification of Face Milling Operation via Time-Frequency and Fourier Analysis

    Get PDF
    Chatter is generally defined as self-generated vibrations from the interaction between tool and workpiece.  It is the most critical vibration in machining operations and can decrease the surface quality and cause the premature tool wear. Chatter creates erroneous vibrations on the workpiece surface. However, even though the spatial response of chatter is still bounded, its frequency response would become unstably broadband, emitting high-pitched sounds. The deterioration in both time and frequency domains implies that chatter is a route-to-chaos process. To capture the time-frequency characteristics of chatter, instantaneous frequency is applied to extract the relevant force vibration of machining chatter, and the energy ratio approach is used to develop a discrete stability lobe diagram of a face-milling operation. The proposed method is validated by measuring the surface roughness of the workpiece.</p

    Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective

    Get PDF
    In plasmonic metals, surface plasmon resonance decays and generates hot electrons and hot holes through non-radiative Landau damping. These hot carriers are highly energetic, which can be modulated by the plasmonic material, size, shape, and surrounding dielectric medium. A plasmonic metal nanostructure, which can absorb incident light in an extended spectral range and transfer the absorbed light energy to adjacent molecules or semiconductors, functions as a “plasmonic photosensitizer.” This article deals with the generation, emission, transfer, and energetics of plasmonic hot carriers. It also describes the mechanisms of hot electron transfer from the plasmonic metal to the surface adsorbates or to the adjacent semiconductors. In addition, this article highlights the applications of plasmonic hot electrons in photodetectors, photocatalysts, photoelectrochemical cells, photovoltaics, biosensors, and chemical sensors. It discusses the applications and the design principles of plasmonic materials and devices

    Conserved Spin and Orbital Angular Momentum Hall Current in a Two-Dimensional Electron System with Rashba and Dresselhaus Spin-orbit Coupling

    Full text link
    We study theoretically the spin and orbital angular momentum (OAM) Hall effect in a high mobility two-dimensional electron system with Rashba and Dresselhuas spin-orbit coupling by introducing both the spin and OAM torque corrections, respectively, to the spin and OAM currents. We find that when both bands are occupied, the spin Hall conductivity is still a constant (i.e., independent of the carrier density) which, however, has an opposite sign to the previous value. The spin Hall conductivity in general would not be cancelled by the OAM Hall conductivity. The OAM Hall conductivity is also independent of the carrier density but depends on the strength ratio of the Rashba to Dresselhaus spin-orbit coupling, suggesting that one can manipulate the total Hall current through tuning the Rashba coupling by a gate voltage. We note that in a pure Rashba system, though the spin Hall conductivity is exactly cancelled by the OAM Hall conductivity due to the angular momentum conservation, the spin Hall effect could still manifest itself as nonzero magnetization Hall current and finite magnetization at the sample edges because the magnetic dipole moment associated with the spin of an electron is twice as large as that of the OAM. We also evaluate the electric field-induced OAM and discuss the origin of the OAM Hall current. Finally, we find that the spin and OAM Hall conductivities are closely related to the Berry vector (or gauge) potential.Comment: latest revised version; Accepted for publication in Physical Review

    The microtubule-associated protein, EB1, links AIM2 inflammasomes with autophagy-dependent secretion

    Get PDF
    Inflammasomes are multi-protein complexes that regulate chronic inflammation-associated diseases by inducing interleukin-1 β (IL-1β) secretion. Numerous components involved in inflammasome activation have been identified, but the mechanisms of inflammasome-mediated IL-1β secretion have not yet been fully explored. Here, we demonstrate that end-binding protein 1 (EB1), which is required for activation of AIM2 inflammasome complex, links the AIM2 inflammasome to autophagy-dependent secretion. Imaging studies revealed that AIM2 inflammasomes colocalize with microtubule organizing centers and autophagosomes. Biochemical analyses showed that poly(dA-dT)-activated AIM2 inflammasomes induce autophagy and IL-1β secretion in an LC3-dependent fashion. Furthermore, depletion of EB1 decreases autophagic shedding and intracellular trafficking. Finally, we found that the 5′-AMP activated protein kinase may regulate this EB1-mediated autophagy-based inflammasome-induced secretion of IL-1β. These findings reveal a novel EB1-mediated pathway for the secretion of IL-1β
    • …
    corecore