34 research outputs found

    Submicron structure random field on granular soil material with retinex algorithm optimization

    Full text link
    In this paper, a Retinex scale optimized image enhancement algorithm is proposed, which can enhance the micro vision image and eliminate the influence of the uneven illumination. Based on that, a random geometric model of the microstructure of granular materials is established with Monte-Carlo method, the numerical simulation including consolidation process of granular materials is compared with the experimental data. The results have proved that the random field method with Retinex image enhancement algorithm is effective, the image of microstructure of granular materials becomes clear and the contrast ratio is improved, after using Retinex image enhancement algorithm to enhance the CT image. The fidelity of enhanced image is higher than that dealing with other method, which have explained that the algorithm can preserve the microstructure information of the image well. The result of numerical simulation is similar with the one obtained from conventional three axis consolidation test, which proves that the simulation result is reliable

    Temporal Changes in Extracellular Vesicle Hemostatic Protein Composition Predict Favourable Left Ventricular Remodeling after Acute Myocardial Infarction

    Get PDF
    The subset of plasma extracellular vesicles (EVs) that coprecipitate with low-density lipoprotein (LDL-EVs) carry coagulation and fibrinolysis pathway proteins as cargo. We investigated the association between LDL-EV hemostatic/fibrinolysis protein ratios and post-acute myocardial infarction (post-AMI) left ventricular (LV) remodeling which precedes heart failure. Protein concentrations of von Willebrand factor (VWF), SerpinC1 and plasminogen were determined in LDL-EVs extracted from plasma samples obtained at baseline (within 72 h post-AMI), 1 month and 6 months post-AMI from 198 patients. Patients were categorized as exhibiting adverse (n = 98) or reverse (n = 100) LV remodeling based on changes in LV end-systolic volume (increased or decreased ≥15) over a 6-month period. Multiple level longitudinal data analysis with structural equation (ML-SEM) model was used to assess predictive value for LV remodeling independent of baseline differences. At baseline, protein levels of VWF, SerpinC1 and plasminogen in LDL-EVs did not differ between patients with adverse versus reverse LV remodeling. At 1 month post-AMI, protein levels of VWF and SerpinC1 decreased whilst plasminogen increased in patients with adverse LV remodeling. In contrast, VWF and plasminogen decreased whilst SerpinC1 remained unchanged in patients with reverse LV remodeling. Overall, compared with patients with adverse LV remodeling, higher levels of SerpinC1 and VWF but lower levels of plasminogen resulted in higher ratios of VWF:Plasminogen and SerpinC1:Plasminogen at both 1 month and 6 months post-AMI in patients with reverse LV remodeling. More importantly, ratios VWF:Plasminogen (AUC = 0.674) and SerpinC1:Plasminogen (AUC = 0.712) displayed markedly better prognostic power than NT-proBNP (AUC = 0.384), troponin-I (AUC = 0.467) or troponin-T (AUC = 0.389) (p \u3c 0.001) to predict reverse LV remodeling post-AMI. Temporal changes in the ratios of coagulation to fibrinolysis pathway proteins in LDL-EVs outperform current standard plasma biomarkers in predicting post-AMI reverse LV remodeling. Our findings may provide clinical cues to uncover the cellular mechanisms underpinning post-AMI reverse LV remodeling

    MAPPING AND TARGETED MODULATION OF HEART LIPIDOME IN MYOCARDIAL INFARCTION

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (SOM

    Submicron structure random field on granular soil material with retinex algorithm optimization

    No full text
    In this paper, a Retinex scale optimized image enhancement algorithm is proposed, which can enhance the micro vision image and eliminate the influence of the uneven illumination. Based on that, a random geometric model of the microstructure of granular materials is established with Monte-Carlo method, the numerical simulation including consolidation process of granular materials is compared with the experimental data. The results have proved that the random field method with Retinex image enhancement algorithm is effective, the image of microstructure of granular materials becomes clear and the contrast ratio is improved, after using Retinex image enhancement algorithm to enhance the CT image. The fidelity of enhanced image is higher than that dealing with other method, which have explained that the algorithm can preserve the microstructure information of the image well. The result of numerical simulation is similar with the one obtained from conventional three axis consolidation test, which proves that the simulation result is reliable

    Study on Misalignment Angle Compensation during Scale Factor Matching for Two Pairs of Accelerometers in a Gravity Gradient Instrument

    No full text
    A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2)

    A Study on Temperature Distribution within HVDC Bushing Influenced by Accelerator Content during the Curing Process

    No full text
    Power transmission technology plays an important role in energy sustainability. Bushing is an indispensable type of equipment in power transmission. In production, the accelerator changes the temperature distribution during the curing process, influencing the formation of defects and thus the safety output of renewable energy. In this study, uncured epoxy resin samples with different accelerator contents were prepared and measured by differential scanning calorimetry (DSC). The obtained heat flow curves were analyzed for curing kinetics. Then, the curing process of large length–diameter ratio bushings was simulated by using the finite element method combined with a curing kinetics model, transient Fourier heat transfer model, and stress–strain model. The study reveals that the curing system can be established by the Sestak–Berggren autocatalytic model with different accelerator contents. The overall curing degree and the maximum radial temperature difference of the capacitor core tend to increase and then decrease with the accelerator content. This is mainly attributable to the rapid exotherm excluding the participation of some molecular chains in the reaction, resulting in permanent under-curing. As the accelerator content increases, the strain peak decreases and then increases. This paper provides guidance for the comprehensive evaluation and manufacturing of the low-defect capacitor cores of large-size high voltage direct current (HVDC) bushings

    A Study on Temperature Distribution within HVDC Bushing Influenced by Accelerator Content during the Curing Process

    No full text
    Power transmission technology plays an important role in energy sustainability. Bushing is an indispensable type of equipment in power transmission. In production, the accelerator changes the temperature distribution during the curing process, influencing the formation of defects and thus the safety output of renewable energy. In this study, uncured epoxy resin samples with different accelerator contents were prepared and measured by differential scanning calorimetry (DSC). The obtained heat flow curves were analyzed for curing kinetics. Then, the curing process of large length–diameter ratio bushings was simulated by using the finite element method combined with a curing kinetics model, transient Fourier heat transfer model, and stress–strain model. The study reveals that the curing system can be established by the Sestak–Berggren autocatalytic model with different accelerator contents. The overall curing degree and the maximum radial temperature difference of the capacitor core tend to increase and then decrease with the accelerator content. This is mainly attributable to the rapid exotherm excluding the participation of some molecular chains in the reaction, resulting in permanent under-curing. As the accelerator content increases, the strain peak decreases and then increases. This paper provides guidance for the comprehensive evaluation and manufacturing of the low-defect capacitor cores of large-size high voltage direct current (HVDC) bushings

    Scale Factor Calibration for a Rotating Accelerometer Gravity Gradiometer

    No full text
    Rotating Accelerometer Gravity Gradiometers (RAGGs) play a significant role in applications such as resource exploration and gravity aided navigation. Scale factor calibration is an essential procedure for RAGG instruments before being used. In this paper, we propose a calibration system for a gravity gradiometer to obtain the scale factor effectively, even when there are mass disturbance surroundings. In this system, four metal spring-based accelerometers with a good consistency are orthogonally assembled onto a rotary table to measure the spatial variation of the gravity gradient. By changing the approaching pattern of the reference gravity gradient excitation object, the calibration results are generated. Experimental results show that the proposed method can efficiently and repetitively detect a gravity gradient excitation mass weighing 260 kg within a range of 1.6 m and the scale factor of RAGG can be obtained as (5.4 ± 0.2) E/μV, which is consistent with the theoretical simulation. Error analyses reveal that the performance of the proposed calibration scheme is mainly limited by positioning error of the excitation and can be improved by applying higher accuracy position rails. Furthermore, the RAGG is expected to perform more efficiently and reliably in field tests in the future

    Influence of Crosslink Density on Electrical Performance and Rheological Properties of Crosslinked Polyethylene

    No full text
    To investigate the influence of the crosslinked polyethylene (XLPE) structure on electrical performance, various analytical methods were employed to study polyethylene structures with different degrees of crosslinking. Dynamic rheological analysis was conducted to determine material shear viscosity, dynamic viscosity, storage modulus (G′), loss modulus (G″), and other rheological parameters. Additionally, the electrical performance of the material was analyzed by studying the phenomenon of space charge accumulation under direct current voltage. The results indicate that with an increasing mass fraction of the crosslinking agent, the crosslink density of crosslinked polyethylene initially increases and then decreases. When the dicumyl peroxide (DCP) content exceeds 1.0 wt.%, there is an accumulation of like-polarity space charges. The best rheological processing performance of crosslinked polyethylene is observed when the DCP content is in the range of 1.0–1.5 wt.%

    Synergistic improved electrical resistivity-temperature characteristics and DC breakdown strength in insulating XLPE composites by incorporating positive temperature coefficient particles

    No full text
    Weakening the electrical resistivity-temperature dependence of cross-linked polyethene (XLPE) is an effective way to enhance the electric field uniformity of high-voltage direct current (HVDC) cables. Therefore, an attempt is made to suppress the negative temperature coefficient (NTC) of electrical resistivity by incorporating BaTiO3-based ceramic fillers with positive temperature coefficient (PTC) electrical resistivity into XLPE. Morphology characterization indicated that PTC particles were well dispersed in the XLPE matrix. The measurements of electrical resistivity and DC breakdown strength are carried out from 30 °C to 90 °C. The electrical resistivity and DC breakdown strength of the sample at high temperatures were significantly improved with the introduction of PTC particles, which is attributed to the deep traps near the Curie temperature region. The high doping content has a better suppression of the NTC effect. The activation energy (0.63 eV) and NTC strength (1.74) of the sample with the addition of 10 wt% of PTC are considerably reduced compared with XLPE. The content of PTC particles was positively correlated to the enhancement of electrical resistivity and DC breakdown strength. The optimum content for DC breakdown strength is about 5 wt%. The low electrical resistivity-temperature dependence of insulation performance shows a potential to obtain temperature-stable HVDC cable insulation
    corecore