63 research outputs found

    Systematic electronic structure in the cuprate parent state from quantum many-body simulations

    Full text link
    The quantitative description of correlated electron materials remains a modern computational challenge. We demonstrate a numerical strategy to simulate correlated materials at the fully ab initio level beyond the solution of effective low-energy models, and apply it to gain a detailed microscopic understanding across a family of cuprate superconducting materials in their parent undoped states. We uncover microscopic trends in the electron correlations and reveal the link between the material composition and magnetic energy scales via a many-body picture of excitation processes involving the buffer layers. Our work illustrates a path towards a quantitative and reliable understanding of more complex states of correlated materials at the ab initio many-body level.Comment: 21 pages, 5 figures, with Supplementary Material

    Externally Corrected CCSD with Renormalized Perturbative Triples (R-ecCCSD(T)) and the Density Matrix Renormalization Group and Selected Configuration Interaction External Sources

    Get PDF
    We investigate the renormalized perturbative triples correction together with the externally corrected coupled-cluster singles and doubles (ecCCSD) method. We use the density matrix renormalization group (DMRG) and heat-bath CI (HCI) as external sources for the ecCCSD equations. The accuracy is assessed for the potential energy surfaces of Hâ‚‚O, Nâ‚‚, and Fâ‚‚. We find that the triples correction significantly improves upon ecCCSD, and we do not see any instability of the renormalized triples with respect to dissociation. We explore how to balance the cost of computing the external source amplitudes against the accuracy of the subsequent CC calculation. In this context, we find that very approximate wave functions (and their large amplitudes) serve as an efficient and accurate external source. Finally, we characterize the domain of correlation treatable using the ecCCSD and renormalized triples combination studied in this work via a well-known wave function diagnostic

    Multireference protonation energetics of a dimeric model of nitrogenase iron-sulfur clusters

    Full text link
    Characterizing the electronic structure of the iron--sulfur clusters in nitrogenase is necessary to understand their role in the nitrogen fixation process. One challenging task is to determine the protonation state of the intermediates in the nitrogen fixing cycle. Here, we use a dimeric iron--sulfur model to study relative energies of protonation at C, S or Fe. Using a composite method based on coupled cluster and density matrix renormalization group energetics, we converge the relative energies of four protonated configurations with respect to basis set and correlation level. We find that accurate relative energies require large basis sets, as well as a proper treatment of multireference and relativistic effects. We have also tested ten density functional approximations for these systems. Most of them give large errors in the relative energies. The best performing functional in this system is B3LYP, which gives mean absolute and maximum errors of only 10 and 13 kJ/mol with respect to our correlated wavefunction estimates, respectively. Our work provides benchmark results for the calibration of new approximate electronic structure methods and density functionals for these problems.Comment: 13 pages, 8 figure

    Hierarchical Clifford transformations to reduce entanglement in quantum chemistry wavefunctions

    Full text link
    The performance of computational methods for many-body physics and chemistry is strongly dependent on the choice of basis used to cast the problem; hence, the search for better bases and similarity transformations is important for progress in the field. So far, tools from theoretical quantum information have been not thoroughly explored for this task. Here we take a step in this direction by presenting efficiently computable Clifford similarity transformations for quantum chemistry Hamiltonians, which expose bases with reduced entanglement in the corresponding molecular ground states. These transformations are constructed via block diagonalization of a hierarchy of truncated molecular Hamiltonians, preserving the full spectrum of the original problem. We show that the bases introduced here allow for more efficient classical and quantum computation of ground state properties. First, we find a systematic reduction of bipartite entanglement in molecular ground states as compared to standard problem representations. This entanglement reduction has implications in classical numerical methods such as ones based on the density matrix renormalization group. Then, we develop variational quantum algorithms that exploit the structure in the new bases, showing again improved results when the hierarchical Clifford transformations are used.Comment: 14 pages, 11 figure

    Interacting models for twisted bilayer graphene: a quantum chemistry approach

    Full text link
    The nature of correlated states in twisted bilayer graphene (TBG) at the magic angle has received intense attention in recent years. We present a numerical study of an interacting Bistritzer-MacDonald (IBM) model of TBG using a suite of methods in quantum chemistry, including Hartree-Fock, coupled cluster singles, doubles (CCSD), and perturbative triples (CCSD(T)), as well as a quantum chemistry formulation of the density matrix renormalization group method (DMRG). Our treatment of TBG is agnostic to gauge choices, and hence we present a new gauge-invariant formulation to detect the spontaneous symmetry breaking in interacting models. To benchmark our approach, we focus on a simplified spinless, valleyless IBM model. At integer filling (ν=0\nu=0), all numerical methods agree in terms of energy and C2zTC_{2z} \mathcal{T} symmetry breaking. Additionally, as part of our benchmarking, we explore the impact of different schemes for removing ``double-counting'' in the IBM model. Our results at integer filling suggest that cross-validation of different IBM models may be needed for future studies of the TBG system. After benchmarking our approach at integer filling, we perform the first systematic study of the IBM model near integer filling (for ∣ν∣<0.2|\nu|< 0.2). In this regime, we find that the ground state can be in a metallic and C2zTC_{2z} \mathcal{T} symmetry breaking phase. The ground state appears to have low entropy, and therefore can be relatively well approximated by a single Slater determinant. Furthermore, we observe many low entropy states with energies very close to the ground state energy in the near integer filling regime
    • …
    corecore