12 research outputs found

    Assessment of Acute Oral Toxicity of Thiolated Gum Ghatti in Rats

    Full text link
    Various drug delivery systems were developed using a modified form of gum ghatti. Modifying gum ghatti using thioglycolic acid improves its mucoadhesive property, and hence, it is a suitable approach for the fabrication and development of controlled drug delivery systems. In accordance with regulatory guidelines, namely, the Organization for Economic Co-operation and Development’s (OECD) 423 guidelines, an acute oral dose toxicity study was performed to examine the toxicological effects of gum ghattiin an animal (Wistar rat) after a single oral dose administration of pure gum ghatti and thiolated gum ghatti. Orally administered pure and thiolated gum ghatti do not reveal any considerable change in the behavioral pattern, food intake, body weight, hematology, or clinical symptoms of treated animals. Furthermore, histopathological studies showed no pathological mutations in the vital organs of Wistar rats after the oral administration of single doses of both types of gumghatti (i.e., 300 mg/kg and 2000 mg/kg body weight). Whole blood clotting studies showed the low absorbance value of the modified gum (thiolated gum ghatti) in contrast to the pure gum and control, hence demonstrating its excellent clotting capability. The aforementioned toxicological study suggested that the oral administration of a single dose of pure and thiolated gum ghatti did not produce any toxicological effects in Wistar rats. Consequently, it could be a suitable and safe candidate for formulating various drug delivery systems.</jats:p

    Modeling the drug release from hydrogel-based matrices

    Get PDF
    In this work the behavior of hydrogel-based matrices, the most widespread systems for oral controlled release of pharmaceuticals, has been mathematically described. In addition, the calculations of the model have been validated against a rich set of experimental data obtained working with tablets made of hydroxypropyl methylcellulose (a hydrogel) and theophylline (a model drug). The model takes into account water uptake, hydrogel swelling, drug release, and polymer erosion. The model was obtained as an improvement of a previous code, describing the diffusion in concentrated systems, and obtaining the erosion front (which is a moving boundary) from the polymer mass balance (in this way, the number of fitting parameters was also reduced by one). The proposed model was found able to describe all the observed phenomena, and then it can be considered a tool with predictive capabilities, useful in design and testing of new dosage systems based on hydrogels
    corecore