1,071 research outputs found

    Dyson-Schwinger Equations with a Parameterized Metric

    Full text link
    We construct and solve the Dyson-Schwinger equation (DSE) of quark propagator with a parameterized metric, which connects the Euclidean metric with the Minkowskian one. We show, in some models, the Minkowskian vacuum is different from the Euclidean vacuum. The usual analytic continuation of Green function does not make sense in these cases. While with the algorithm we proposed and the quark-gluon vertex ansatz which preserves the Ward-Takahashi identity, the vacuum keeps being unchanged in the evolution of the metric. In this case, analytic continuation becomes meaningful and can be fully carried out.Comment: 10 pages, 7 figures. To appear in Physical Review

    Phase diagram and critical endpoint for strongly-interacting quarks

    Full text link
    We introduce a method based on the chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential/temperature plane for strongly-interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical endpoint (CEP) at (\mu^E,T^E) ~ (1.0,0.9)T_c, where T_c is the critical temperature for chiral symmetry restoration at \mu=0; and find that a domain of phase coexistence opens at the CEP whose area increases as a confinement length-scale grows.Comment: 4 pages, 3 figure

    Multi-dimensional Glycan Microarrays with Glyco-macroligands

    Get PDF
    Glycan microarray has become a powerful high-throughput tool for examining binding interactions of carbohydrates with the carbohydrate binding biomolecules like proteins, enzymes, antibodies etc. It has shown great potential for biomedical research and applications, such as antibody detection and profiling, vaccine development, biomarker discovery, and drug screening. Most glycan microarrays were made with monovalent glycans immobilized directly onto the array surface via either covalent or non-covalent bond, which afford a multivalent glycans in two dimensional (2D) displaying. A variety of glyco-macroligands have been developed to mimic multivalent carbohydrate-protein interactions for studying carbohydrate-protein interactions and biomedical research and applications. Recently, a number of glyco-macroligands have been explored for glycan microarray fabrication, in particular to mimick the three dimensional (3D) multivalent display of cell surface carbohydrates. This review highlights these recent developments of glyco-macroligand-based microarrays, predominantly, novel glycan microarrays with glyco-macroligands like glycodendrimers, glycopolymers, glycoliposomes, neoglycoproteins, and glyconanoparticles with the effort in controlling the density and orientation of glycans on the array surface, which facilitate both their binding specificity and affinity and thus the high performance of glycan microarrays
    • …
    corecore