3,064 research outputs found

    Measurements of Grain Motion in a Dense, Three-Dimensional Granular Fluid

    Full text link
    We have used an NMR technique to measure the short-time, three-dimensional displacement of grains in a system of mustard seeds vibrated vertically at 15g. The technique averages over a time interval in which the grains move ballistically, giving a direct measurement of the granular temperature profile. The dense, lower portion of the sample is well described by a recent hydrodynamic theory for inelastic hard spheres. Near the free upper surface the mean free path is longer than the particle diameter and the hydrodynamic description fails.Comment: 4 pages, 4 figure

    Cold quarks in medium: an equation of state

    Full text link
    We derive a compact, semi-algebraic expression for the cold quark matter equation of state (EoS) in a covariant model that exhibits coincident deconfinement and chiral symmetry restoring transitions in-medium. Along the way we obtain algebraic expressions for: the number- and scalar-density distributions in both the confining Nambu and deconfined Wigner phases; and the vacuum-pressure difference between these phases, which defines a bag constant. The confining interaction materially alters the distribution functions from those of a Fermi gas and consequently has a significant impact on the model's thermodynamic properties, which is apparent in the EoS.Comment: 5 pages, 5 figure

    Phase diagram and critical endpoint for strongly-interacting quarks

    Full text link
    We introduce a method based on the chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential/temperature plane for strongly-interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical endpoint (CEP) at (\mu^E,T^E) ~ (1.0,0.9)T_c, where T_c is the critical temperature for chiral symmetry restoration at \mu=0; and find that a domain of phase coexistence opens at the CEP whose area increases as a confinement length-scale grows.Comment: 4 pages, 3 figure

    Exact solution at integrable coupling of a model for the Josephson effect between small metallic grains

    Full text link
    A model is introduced for two reduced BCS systems which are coupled through the transfer of Cooper pairs between the systems. The model may thus be used in the analysis of the Josephson effect arising from pair tunneling between two strongly coupled small metallic grains. At a particular coupling strength the model is integrable and explicit results are derived for the energy spectrum, conserved operators, integrals of motion, and wave function scalar products. It is also shown that form factors can be obtained for the calculation of correlation functions. Further, a connection with perturbed conformal field theory is made.Comment: 12 pages, latex, no figure
    • …
    corecore