86 research outputs found

    Making Large Language Models Perform Better in Knowledge Graph Completion

    Full text link
    Large language model (LLM) based knowledge graph completion (KGC) aims to predict the missing triples in the KGs with LLMs and enrich the KGs to become better web infrastructure, which can benefit a lot of web-based automatic services. However, research about LLM-based KGC is limited and lacks effective utilization of LLM's inference capabilities, which ignores the important structural information in KGs and prevents LLMs from acquiring accurate factual knowledge. In this paper, we discuss how to incorporate the helpful KG structural information into the LLMs, aiming to achieve structrual-aware reasoning in the LLMs. We first transfer the existing LLM paradigms to structural-aware settings and further propose a knowledge prefix adapter (KoPA) to fulfill this stated goal. KoPA employs structural embedding pre-training to capture the structural information of entities and relations in the KG. Then KoPA informs the LLMs of the knowledge prefix adapter which projects the structural embeddings into the textual space and obtains virtual knowledge tokens as a prefix of the input prompt. We conduct comprehensive experiments on these structural-aware LLM-based KGC methods and provide an in-depth analysis comparing how the introduction of structural information would be better for LLM's knowledge reasoning ability. Our code is released at https://github.com/zjukg/KoPA.Comment: Working in progres

    Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning

    Full text link
    Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.Comment: This paper is accepted by WWW'1

    Unleashing the Power of Imbalanced Modality Information for Multi-modal Knowledge Graph Completion

    Full text link
    Multi-modal knowledge graph completion (MMKGC) aims to predict the missing triples in the multi-modal knowledge graphs by incorporating structural, visual, and textual information of entities into the discriminant models. The information from different modalities will work together to measure the triple plausibility. Existing MMKGC methods overlook the imbalance problem of modality information among entities, resulting in inadequate modal fusion and inefficient utilization of the raw modality information. To address the mentioned problems, we propose Adaptive Multi-modal Fusion and Modality Adversarial Training (AdaMF-MAT) to unleash the power of imbalanced modality information for MMKGC. AdaMF-MAT achieves multi-modal fusion with adaptive modality weights and further generates adversarial samples by modality-adversarial training to enhance the imbalanced modality information. Our approach is a co-design of the MMKGC model and training strategy which can outperform 19 recent MMKGC methods and achieve new state-of-the-art results on three public MMKGC benchmarks. Our code and data have been released at https://github.com/zjukg/AdaMF-MAT.Comment: Accepted by LREC-COLING 202

    Neural-Symbolic Entangled Framework for Complex Query Answering

    Full text link
    Answering complex queries over knowledge graphs (KG) is an important yet challenging task because of the KG incompleteness issue and cascading errors during reasoning. Recent query embedding (QE) approaches to embed the entities and relations in a KG and the first-order logic (FOL) queries into a low dimensional space, answering queries by dense similarity search. However, previous works mainly concentrate on the target answers, ignoring intermediate entities' usefulness, which is essential for relieving the cascading error problem in logical query answering. In addition, these methods are usually designed with their own geometric or distributional embeddings to handle logical operators like union, intersection, and negation, with the sacrifice of the accuracy of the basic operator - projection, and they could not absorb other embedding methods to their models. In this work, we propose a Neural and Symbolic Entangled framework (ENeSy) for complex query answering, which enables the neural and symbolic reasoning to enhance each other to alleviate the cascading error and KG incompleteness. The projection operator in ENeSy could be any embedding method with the capability of link prediction, and the other FOL operators are handled without parameters. With both neural and symbolic reasoning results contained, ENeSy answers queries in ensembles. ENeSy achieves the SOTA performance on several benchmarks, especially in the setting of the training model only with the link prediction task.Comment: Paper accepted by NeurIPS202

    A Comprehensive Study on Knowledge Graph Embedding over Relational Patterns Based on Rule Learning

    Full text link
    Knowledge Graph Embedding (KGE) has proven to be an effective approach to solving the Knowledge Graph Completion (KGC) task. Relational patterns which refer to relations with specific semantics exhibiting graph patterns are an important factor in the performance of KGE models. Though KGE models' capabilities are analyzed over different relational patterns in theory and a rough connection between better relational patterns modeling and better performance of KGC has been built, a comprehensive quantitative analysis on KGE models over relational patterns remains absent so it is uncertain how the theoretical support of KGE to a relational pattern contributes to the performance of triples associated to such a relational pattern. To address this challenge, we evaluate the performance of 7 KGE models over 4 common relational patterns on 2 benchmarks, then conduct an analysis in theory, entity frequency, and part-to-whole three aspects and get some counterintuitive conclusions. Finally, we introduce a training-free method Score-based Patterns Adaptation (SPA) to enhance KGE models' performance over various relational patterns. This approach is simple yet effective and can be applied to KGE models without additional training. Our experimental results demonstrate that our method generally enhances performance over specific relational patterns. Our source code is available from GitHub at https://github.com/zjukg/Comprehensive-Study-over-Relational-Patterns.Comment: This paper is accepted by ISWC 202

    Revisit and Outstrip Entity Alignment: A Perspective of Generative Models

    Full text link
    Recent embedding-based methods have achieved great successes in exploiting entity alignment from knowledge graph (KG) embeddings of multiple modalities. In this paper, we study embedding-based entity alignment (EEA) from a perspective of generative models. We show that EEA shares similarities with typical generative models and prove the effectiveness of the recently developed generative adversarial network (GAN)-based EEA methods theoretically. We then reveal that their incomplete objective limits the capacity on both entity alignment and entity synthesis (i.e., generating new entities). We mitigate this problem by introducing a generative EEA (GEEA) framework with the proposed mutual variational autoencoder (M-VAE) as the generative model. M-VAE enables entity conversion between KGs and generation of new entities from random noise vectors. We demonstrate the power of GEEA with theoretical analysis and empirical experiments on both entity alignment and entity synthesis tasks.Comment: Accepted at ICLR 202

    Ca(Mg1/3Ta2/3)O3 dielectric thin films: preparation, structure, mechanical and dielectric properties

    Get PDF
    The effects of annealing temperature on the crystallinity, grain size and hence mechanical and dielectric properties of Ca(Mg1/3Ta2/3)O3 (CMT) dielectric films were systematically studied. The CMT thin films were fabricated by an aqueous solution-gel technology and exhibited uniform, smooth and dense morphologies. The optimum pyrolysis temperature and time was 550 °C and 330 s, respectively. All the CMT films annealed from 650 to 800 °C show a single perovskite phase and the crystallization increases with increasing the annealed temperature but a secondary phase is observed in the film annealed at 900 °C. The hardness and reduced modulus were effectively enhanced by increasing the annealing temperature, which can be correlated to the crystallinity and densification improvements. Higher elastic recovery was observed for CMT films annealed at higher temperatures indicating less difficult recoveries for those films. We also noticed that the dielectric constants were improved for the samples annealed at higher temperature, which may enable higher performances for future microwave communication electronics

    Generalizing to Unseen Elements: A Survey on Knowledge Extrapolation for Knowledge Graphs

    Full text link
    Knowledge graphs (KGs) have become valuable knowledge resources in various applications, and knowledge graph embedding (KGE) methods have garnered increasing attention in recent years. However, conventional KGE methods still face challenges when it comes to handling unseen entities or relations during model testing. To address this issue, much effort has been devoted to various fields of KGs. In this paper, we use a set of general terminologies to unify these methods and refer to them collectively as Knowledge Extrapolation. We comprehensively summarize these methods, classified by our proposed taxonomy, and describe their interrelationships. Additionally, we introduce benchmarks and provide comparisons of these methods based on aspects that are not captured by the taxonomy. Finally, we suggest potential directions for future research.Comment: Accepted to IJCAI 2023 Survey Trac
    corecore