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Nowadays, the advanced sensor technology with cloud computing and big data is generating large-scale heterogeneous and real-
time IOT (Internet of Things) data. To make full use of the data, development and deploy of ubiquitous IOT-based applications in
various aspects of our daily life are quite urgent. However, the characteristics of IOT sensor data, including heterogeneity, variety,
volume, and real time, bring many challenges to effectively process the sensor data. The Semantic Web technologies are viewed
as a key for the development of IOT. While most of the existing efforts are mainly focused on the modeling, annotation, and
representation of IOT data, there has been little work focusing on the background processing of large-scale streaming IOT data. In
the paper, we present a large-scale real-time semantic processing framework and implement an elastic distributed streaming engine
for IOT applications. The proposed engine efficiently captures and models different scenarios for all kinds of IOT applications based
on popular distributed computing platform SPARK. Based on the engine, a typical use case on home environment monitoring is
given to illustrate the efficiency of our engine. The results show that our system can scale for large number of sensor streams with

different types of IOT applications.

1. Introduction

With the rapid advances in wireless sensor data collec-
tion and communication, increased number of IOT data is
increasing explosively, which builds many massive wireless
sensor networks (WSNs). It is predicted that within the next
decade billions of devices (Cisco predicts that the number
of the Internet connected devices will be around 50 billion
by 2020) [1] will generate myriad of real-world data for
many applications and services in a variety of areas such as
smart grids, smart homes, e-health, automotive, transport,
and environmental monitoring. Such stunning massive and
widespread data can help us to observe the surroundings,
learn patterns, and have a better understanding of the world,
which will construct a more intelligent world.

To make full use of the senses to implement deeper
web intelligence, a natural next step would be to unify
and process IOT data by existing mature web infrastructure
and protocols. Presently, many efforts have been put on
this area from the Internet of Things (IOT) to Web. The
W3C founded the Web of Things Community Group aiming
at accelerating the adoption of Web technologies such as

semantic technologies as a basic for enabling services for the
combination of IOT with rich descriptions of web data and
the context in which they are used. The industry also initiates
the standards oneM2M (http://www.onem2m.org/), whose
goal is to develop technical specification which is used to
address the need for a common IOT service layer by reusing
existing web standards and protocols, including RDE, HTTP,
and Restful.

However, the characteristics of IOT data, including het-
erogeneity, variety, volume, and real time, pose a series of
challenges to effectively organize, publish, and process the
sensor data. The Semantic Web technologies are viewed as a
key for the development of IOT. Figure 1 shows the generic
functional model of oneM2M for supporting semantics in the
specification of oneM2M study on abstraction and semantics
enablement [2]. To be specific, it serves the following several
purposes: First, the abstraction and semantics layer provide
us with a good way to resolve the problems of interoperability
and integration within this heterogeneous world of IOT data
by defining and reusing some standard semantic concepts.
Then, the Semantic Web provides a seamless interface to
facilitate the interactions of IOT data and the other existing
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FIGURE 1: Generic functional semantic model for supporting IOT applications.

web of data such as Linked Data [3], DBpedia [4], Linked-
Geodata [5], and various kinds of data from Web Services. At
last, the service layer provides an interface for various IOT
applications by semantic processing technologies, including
semantic mash-up, query, and reasoning.

Currently, most of the existing works aim at the anno-
tation and definition of various WSNs by providing corre-
sponding description ontology. For example, ontologies such
as the W3Cs Semantic Sensor Network (SSN) ontology have
been developed, offering a number of constructs to formally
describe not only the sensor resources but also the sensor
observation and measurement data [6]. However, there has
been little work focusing on the background processing of
large-scale streaming IOT data. In the paper, we present a
large-scale real-time semantic processing framework for IOT
applications. The proposed framework efficiently captures
and models different scenarios for various IOT applications.
We have implemented an elastic streaming engine based on
popular large-scale distributed computing platform SPARK
[7]. Based on the engine, a typical use case on home
environment monitoring is given to illustrate the efficiency
of our engine. The results show that our system can scale for
large number of sensors streams with different types of IOT
applications.

The remainder of this paper is organized as follows.
Section 2 outlines related work. In Section 3, we introduce
the semantic processing framework and processing engine
for IOT applications. Section 4 describes a typical use case
in home environment monitoring. Section 5 presents our
experiments and results. Finally, we conclude the work in
Section 6.

2. Related Work

To the best of our knowledge, our framework and system are
the first work addressing various semantic processing tasks
for large-scale streaming IOT data, including IOT semantic

mash-up, semantic query, and semantic reasoning. There is
some related work as follows.

2.1. I0T Modeling and Ontology. One key research topic in
IOT is to represent the “things” by standard vocabularies
and schemas. Semantic Sensor Web (SSW) is a technology in
which sensor data is semantically annotated for interoperabil-
ity and also provides contextual information for situational
knowledge [8]. Many works have proposed semantic model
for representing sensors and data. Ontologies such as the
W3C’s SSN ontology have been developed [6]. These ontolo-
gies provide metadata for numerical, spatial, temporal, and
other semantic objects. Similar works for sensor metadata
description also include Sensor Data Ontology (SDO) [9] and
SensorML [10].

These works mainly focus on semantic annotation for the
interoperability of IOT by defining a unified and standard
ontology, paying no attention to the high-level semantic IOT
applications.

2.2. Semantic IOT Applications. Gyrard proposes a semantic-
based Machine-to-Machine Measurement approach (M3) to
automatically combine, enrich, and reason about IOT data
to provide promising cross-domain IOT applications, such
as naturopathy application based on multiple datasets [11].
The approach also presents a hub for cross-domain ontologies
and datasets. References [12, 13] apply the IOT in the generic
agriculture and healthcare context management. SSEO [14] is
developed to enable semantic indexing, machine-processable
event detection, and data exchange for smart space modeling.
Other applications include CONON [15], CoOL [16], and
CoBrA [17].

Most of the work aims at building IOT applications in a
specific domain, failing to provide a generic semantic IOT
processing framework. And they also did not deal with some



International Journal of Distributed Sensor Networks

important challenges for IOT data, such as the real time and
scalability.

2.3. Stream Processing for Semantic Data. There are sev-
eral semantic stream data processing engines, including
Streaming SPARQL [18], C-SPARQL [19], and CQELS [20].
Streaming SPARQL extends SPARQL to process data streams.
C-SPARQL defines an extension of SPARQL whose dis-
tinguishing feature is the support of continuous queries,
that is, queries registered over RDF data streams and then
continuously executed. CQELS is a native and adaptive query
processor for unified query processing over Linked Stream
Data and Linked Data.

However, most of these works only focus on the semantic
query for Linked Stream Data, ignoring other common
demands of IOT applications, including semantic mash-up
and reasoning. What is more, the systems are designed to run
on a single machine, while our system goes beyond that and
specifically focuses on the common scalability issues for IOT
applications.

3. Proposed Framework and Elastic
Processing Engine

In this section, we propose the large-scale real-time semantic
processing framework for IOT applications and elaborate
the elastic processing engine to explain how it provides the
capabilities for performing various IOT applications.

3.1. Framework. Figure2 shows the architecture of our
semantic processing framework. In general, it consists of five
parts: physical entities layer, abstract entities layer, window-
based data stream layer, virtual entities layer, and elastic
semantic engine layer.

3.1.1. Physical Entities Layer. Physical entities layer is located
in the lowest layer of the framework, which is responsible for
collecting raw sensor data in real time. Every physical entity
represents a tangible element that can be sensed by sensors
that are deployed in the oneM2M Field Domain environment
and that is not specific to a particular IOT application
in this environment. According to the oneM2M project
standardization, every kind of sensors is to be organized by
logical entity (AE) and common services entity (CSE), which
provide application logic and common services, respectively.

3.1.2. Abstract Entities Layer. Abstract entities layer is respon-
sible for receiving and implementing the abstraction for
the physical devices by the semantic annotation of proxy
software. The abstraction layer aims at hiding the complexity
of devices and environments by providing a standard format
to represent devices. So from the view of upper layer, all the
heterogeneous physical sensors can be seen as unified data
streams.

3.1.3. Window-Based Data Stream Layer. 'The layer focuses on
extracting related data streams into the windows according

to the demands of upper applications. In the real-world
IOT applications, data takes the form of continuous streams
instead of the form of finite datasets stored in a traditional
repository. This is the case for traffic monitoring, environ-
ment monitoring, disaster management, telecommunication
management, manufacturing, and many other domains.
Every sensor corresponds to a window with a certain size.

3.1.4. Virtual Entities Layer. Virtual entities layer aggregates
the related window data required by every virtual entity.
Virtual entity is a new resource created by multiple window
data streams, which is used to accomplish an application
service. For our latter use case, if user in a home requests
the service for Discomfort Index (DI), a new virtual entity
will be generated through aggregating corresponding home
appliance sensors (such as temperature, heater, and air
cleaner sensors). Then we can get the service of DI by the
virtual entity.

3.1.5. Elastic Semantic Engine Layer. The elastic semantic
engine layer is the key of the architecture. The layer is
responsible for receiving of outer requests, creating of cor-
responding virtual entities, interacting with static web of
data, and real-time returning of continuous results. Our work
mainly focuses on the layer. We will discuss it in detail in the
next section.

3.2. Elastic Streaming Processing Engine. Our elastic seman-
tic streaming processing engine provides various common
IOT services by constructing corresponding virtual entities,
including IOT semantic mash-up, query, and reasoning.
Every virtual entity aggregates the RDF streams from cor-
responding several windows. A window extracts the latest
elements from the sensor stream. Besides the streaming
IOT data, some applications need auxiliary background
knowledge, such as Linked Open Data, DBpedia, and Linked-
Geodata.

In this part, related definitions are first given; then we
elaborate on the 3 functional modules of the engines.

Definition 1 (RDF stream (S)). The basic data unit for RDF
stream is a quad ({s, p,0,t)). A RDF stream is defined as an
ordered sequence of pairs, where every pair is constituted by
multiple basic data units, denoted as D/, where i represents
the identification (ID) of certain sensor and j is the times-
tamp. For example, S; = {D?, D}, D?,..., i € N} denotes the
RDF stream data of the ith sensor.

Definition 2 (window (W)). A window is a subset of the
RDF streams given a time range t. W(t) = {D?,Dil,
D?,...,Di"', t € N} denotes the RDF stream data of the
ith sensor within the latest ¢ logical time units. For example,
W,(3) can represent the data of Sensor, within the last 3
seconds.

Definition 3 (virtual window (V)). Virtual window aggre-
gates the related data needed by a virtual entity, which
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FIGURE 2: Large-scale real-time semantic processing framework for IOT applications.

includes the corresponding window and background knowl-
edge B = (s, p,0). A virtual window can be denoted as V; =
{W', B'}, where W' represents the set of windows aggregated
by the virtual window V; and B' is the set of background
knowledge bases needed by V.

3.2.1. 10T Semantic Mash-Up. Semantic mash-up is one
of the most basic demands in IOT domain since many
IOT applications rely on the task. It provides functionalities
to support new services by aggregating multiple disperse
resources. For example, “compute the indoor air quality index
(AQI) of a room” is a typical mash-up application, which
needs to accomplish the task based on various window data
sources including PM2.5, O5, and CO.

The mash-up task is formalized via the concepts of
filtering and recombination. Given a set of RDF streams S =
{S0>S1>S,, .. .Sy} N is the number of sensors streams. A
filtering is a function v : § — T which maps the primitive
RDF streams to a triple set T = {(s, p,0)}. A recombination
is a mapping y : T — T’ which transforms T to T’ based
on the mash-up formulas. Take indoor AQI for example; T
represents the triples containing the concentration of related
sensors. y denotes the mapping formula for computing the
individual AQI.

3.2.2. 10T Semantic Query. 10T semantic query isa common
function for IOT applications. It enhances the IOT discov-
ery mechanism, to allow locating and linking resources or
services based on their semantic information, such as “get
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FIGURE 3: The simple concept model for home environment monitoring.

the temperature of the room,” and “get the all rooms whose
PM2.5 > 80.”

The query task is formalized via the concept of mapping.
We denote as I, B, L, and V, respectively, the domains of
IRIs, blank nodes, literals, and variables which are all disjoint.
We also define T = (I U B U L). A mapping p is a partial
function y : V. — T which gives the bindings for all the
variables of a query. Evaluation occurs when an input graph
pattern (denoted as P) in the query is matched against a
virtual window (V). P is a set of triple patterns t = (s, p,0)
such that s, p,o € (V U T). We then define dom(y) as the
subset of V where y is defined (i.e., the domain of i) and use
the notation p(x) to refer to the bindings of variable x in .

3.2.3. 10T Semantic Reasoning. Reasoning is a mechanism to
derive new implicit knowledge from semantically annotated
data and to answer complex user query. It can be imple-
mented as a piece of software to be able to infer logical
consequences from a set of asserted facts or axioms. Many
IOT services belong to the application type. For example,
we can infer the Human Comfort Index based on the
temperature and humidity, the dangerous level of gas leaking,
and so on.

The reasoning task for IOT applications can be seen as the
process of applying the reasoning rules in IOT data to derive
new facts. We denote as W and B, respectively, the windows
of sensor streams and background knowledge. F represents
a set of facts that we want to y contains a set of rules y =
{R;, Ry, R;, .. .}. Thus the reasoning task is formalized as § :

(W,B) 5 F.

4. Use Case: Home Environment Monitoring

In this section, we give a common IOT use case. It is designed
to facilitate the smart real-time monitoring to the home
environment. We first give an overview of the use case; then
the data model is presented. At last, three concrete application
examples are introduced.

4.1. Overview. Nowadays, people are paying much attention
to the environmental problems since we are facing a series
of serious environmental pollution types, such as smog
disaster and water pollution. To deal with these challenges,
governments deploy lots of outdoor monitoring stations to
capture and publish real-time environmental information to

the public. However, there is limited work in the indoor
environmental monitoring due to a lack of sensor devices and
processing infrastructure.

With the popularity of smart home appliances (e.g.,
heater, air conditioner, humidifier, and air cleaner) equipped
with environment sensors (e.g., sensors for temperature,
humidity, CO;, CO,, and VOC), large volumes of data
from all aspects of indoor environment are available, which
makes it possible to implement various home monitoring
applications including emergency detection and indoor air
quality index. Presently, many commercial companies such
as Huawei, Cisco, Intel, and Telecom are planning to deploy
and develop related hardware and software infrastructure to
provide similar services.

Our use case considers the scenario: suppose a number of
households in a city have installed relevant smart appliances;
they want to get a series of environment monitoring services
from the supplier, including Indoor Air Pollution Index
(API), Indoor Sensor Discovery, and Human Comfort Index
(Igc)- The three cases correspond to the above three kinds
of IOT applications: IOT semantic mash-up, IOT semantic
query, and IOT semantic reasoning.

4.2. Data Model. As the paper mainly focuses on the back-
ground streaming data processing for IOT applications, we
do not create a complex ontology to semantically annotate all
the various IOT data. Conversely, we design a simple concept
model for the home environment monitoring scenario (see
Figure 3). The model captures three types of resources: home,
room, and sensor. The label under the resource denotes its
URL “p” is the namespace of the properties. Every sensor
entity has three properties: type, value, and time.

Figure 4 shows a snapshot of the stream knowledge
graph based on the concept model. Every home contains
multiple rooms (living room, bedroom, kitchen, and so on).
Every room is equipped with 15 kinds of sensors, including
temperature, humidity, illumination, volume, PM10, PM2.5,
03, CO, SO,, and NO,.

4.3. Scenarios

4.3.1. Streaming Semantic Mash-Up. Outdoor AQI is avail-
able to us for years, while little attention is paid to indoor
AQI, which is also important both for customers and for
device suppliers. For customers, the indoor AQI can help
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FIGURE 4: A snapshot of the stream knowledge graph.

them keep track of the latest situation of the house and the
top air pollutants. For suppliers, the AQI data can help them
monitor their devices and have a better understanding of the
needs of different customers.

The indoor AQI task is a typical IOT semantic mash-up
application since it needs to integrate multiple window data
sources and combine them to complete a specific work. The
indoor AQI task is composed of two phases. The first step is to
compute the individual AQI (IAQI) for a pollutant. Equation
(1) gives the computing formula for IAQI, based on [21].
The parameters in the equation are relevant to the specific
pollutant. Related pollutants include PM10, PM2.5, O,, CO,
SO,, and NO,. Then these IAQIs will be sorted based on (2).
The final result will be displayed by a sequence of IAQIs in
a descending order, which will keep customers informed of
the noticeable pollutants. For more details, readers can refer
to [21]. Consider

_IAQl; - 1AQI,

IAQI, = C, - BP, ) +IAQI,,
Q P BPHi _ BPLO ( P Lo) Q Lo (1)

AQI = max {IAQI,, IAQL, IAQL,, ..., IAQL,}.  (2)

4.3.2. Streaming Semantic Query. The streaming semantic
query provides us with a basic function to discover and query
the IOT resources in real time. We implement the following
6 query examples to illustrate its applications (Table 1). All
streaming queries are showed in Appendix A.

4.3.3. Streaming Semantic Reasoning. Reasoning is ubiqui-
tous in the IOT environment. We can derive corresponding
conclusions if certain data streams trigger reasoning rules.
For example, we can get warnings if some pollutants’ concen-
tration exceeds normal range, such as temperature and CO.
Other reasoning examples include inferring the health status
and sleep quality of a person based on some wearable devices
such as smart band.

TaBLE 1: IOT streaming query examples.

Query  Goal

Q1 Query the type and value of all sensors in a specific
room

Q2 Query the value of PM2.5 sensor in a specific room

Q3 Query the value of all CO sensors and corresponding
room ID

Q4 Query the value of all SO, sensors and corresponding
sensor ID

Q5 Query all the room ID and sampling time with
humidity sensor

Q6 Query the temperature and sampling time in a specific

room

Here we give the example of reasoning the human
comfort level. The application will help us to keep track of
the conditions of indoor rooms, and automatically adjust the
indoor environment to prevent heatstroke or cold in time.
Specifically, two kinds of sensor streams (temperature and
humidity) will be first integrated to compute the Human
Comfort Index according to (3). Then based on reasoning
rules in Appendix B, the level of human comfort will be
derived. Consider

Inc =T -0.55(1— Hg) (T -58) . (3)

5. Experiment and Evaluation

In this section, we introduce the experiments and evalua-
tions. First the experimental environment is briefly presented
including the configuration and data. Then extended exper-
iments are performed to evaluate the system’s functionality
and scalability.
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FIGURE 5: The snapshot of indoor environment monitoring scenarios.

5.1. Experiment Setup

Configuration. The experiment is implemented on a SPARK
cluster with three machines. Each node has 16 GB DDR3
RAM, 8-core Intel Xeon E5606 CPUs at 2.13 GHz, and 1.5 TB
disk. The nodes are connected by the network with the
bandwidth of 1000 M/s. All the nodes use CentOS6.4 with the
software types JDK-1.7.0, Scala-1.10.1, and SPARK-0.9.0.

Data. The experimental data is generated by our stream
data generator whose schema is based on the concept model
in Figure 3. The main parameters of the generator are R
and T, denoting the number of homes and sampling time,
respectively. The number of homes is in proportion to the
number of sensors denoted by N, (N, = 15 * 5 % R, where 15
and 5 represent the number of sensors in a room and rooms in
a home). Sampling time stimulates the rate of sensor stream.
The average data size generated by a sensor within a sampling
time is 0.5 (KB). Data generator and all the source codes are

available in (https://github.com/hualichenxi/Semantic-IOT-
Engine/tree/master/Experiment).

5.2. Functional Evaluation. For functional experiment, we
first briefly introduce the implementation of the elastic
streaming semantic engine. Then based on the proposed
engine, 3 kinds of representative IOT applications are pre-
sented to illustrate the functional characteristics of our
system.

We built our elastic streaming processing engine based
on the eflicient in-memory cluster computing framework
SPARK, which provides us with rich data abstraction and
operation abstraction to meet the needs of various IOT appli-
cations. For the data model, we use the DStream (Discretized
Stream) to model the window streams. For the processing
model, operators provided by SPARK such as “filter” and
“map” are translated into the processing primitives to effec-
tively implement the different IOT scenarios.
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Presently, we have preliminarily implemented the IOT
mash-up subsystem, query subsystem, and reasoning subsys-
tem. Every subsystem acts as a module of our elastic seman-
tic processing engines. Once an IOT application requests
service, corresponding subsystem will be activated to run
a SPARK job to return continuous results. Figure 5 shows
partial running results of the previous 3 use cases. For more
results, readers can access (https://github.com/hualichenxi/
Semantic-IOT-Engine/tree/master/Experiment).

5.3. Scalability Evaluation. For scalability experiment, we use
the AQI use case to illustrate the performance of our engine
by increasing the number of sensors streams. During the
process of SPARK streaming execution, we will write a total
delay (TD) into the log file after the data in a time slice has
been processed completely. The parameter records the total
time from receiving window data to output final results. In
our experiment, the time slice (D) is set as 5 seconds and we
will run the program for 300 seconds. That is to say, 60 TD
will be written into the log file.

Figures 6 and 7 show the trend of the processing time
(TD) in single node and cluster with varied sensors. For single
node experiment, the number of sensors is varied from 15,000
to 150,000. For cluster experiment, the number of sensors is
varied from 75,000 to 750,000. The two figures only show the
processing time for parts of sensors so that we can recognize
the broken line well. From both figures, in the beginning
of executing a SPARK job, TD is not stable (0~50) for all
varied sensors. After a while, TD will stay in a comparatively
stable level. Here we choose these TD in the last 250 s and
compute their average value denoted as TDg,. To capture
the fluctuation of the processing time, we also compute the
standard deviation o of TDg,.

Equation (4) computes the system’s throughput Q (MB/s):
0.5is the average data size generated by a sensor in a sampling
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time, Ny is the number of sensors, and TDyg, is the processing
time. Consider

1 0.5N,
Q= x 2=, @
1024 ~ TDg,
ting time f i x dat
Sizeup = computing time for processing m x data )

computing time for processing data

Tables 2 and 3 show the execution results in single
node and cluster. Figures 6 and 7 show the throughput and
processing time with increased sensors. We can conclude the
following results from the tables.

Firstly, we can get the correlation among relevant vari-
ables: TDg,, Q, and N,. From Figures 8 and 9, we can see
that TDg, and Q increase with the increasing numbers of
sensors. But when the ratio of TDg, to D reaches a certain
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TaBLE 2: Throughput and sizeup in single node. TaBLE 3: Throughput and sizeup in cluster.
N, TD (s) TD/D o Q (MB/s) Sizeup N; (k) TD (s) TD/D o Q (MB/s) Sizeup
15,000 0.308 6.17% 0.06584 23.759 1 37,500 0.438 8.76% 0.08675 41.825 1
30,000 0.566 11.32% 0.08999 25.879 1.836 75,000 0.543 10.85% 0.08929 67.474 1.24
45,000 0.635 12.70% 0.09619 34.605 2.06 112,500 0.566 11.32% 0.10169 97.025 1.29
60,000 0.727 14.54% 0.11524 40.305 2.36 150,000 0.575 11.49% 0.10676 127.452 1.31
75,000 0.751 15.02% 0.11416 48.769 2.44 187,500 0.623 12.46% 0.13582 146.922 1.42
90,000 0.821 16.42% 0.10602 53.518 2.66 225,000 0.627 12.54% 0.13051 175.160 1.40
105,000 0.956 19.12% 0.11979 53.635 3.10 262,500 0.753 15.07% 0.14888 170.142 1.72
120,000 1.218 24.37% 0.13368 48.092 3.95 300,000 0.991 19.83% 0.17464 147.753 2.26
135,000 1.785 35.70% 0.19057 36.930 5.79 337,500 2.519 50.37% 0.56164 65.431 5.75
150,000  2.440 48.81% 0.24599 30.012 7.92 375,000 3.294 65.89% 0.78245 55.583 7.52

value, the throughput will decrease rapidly. This is because the
computing capability of the system will not be able to catch up
with the rate of the input data stream. As a result, the delay
caused by the last time slice will have an effect on the next
process and the system will become more and more unstable.
The evident increasing of o also reflects the result that TDg,
has a larger fluctuation. The correlation analysis can help us
control the rate of input stream and set proper time slice to
accommodate the ability of the system.

Secondly, Tables 2 and 3 show that our system achieves
high throughputs: more than 53 MB/s and 175 MB/s in single
node and cluster. Benefiting from the system’s elastic process-
ing ability, it can concurrently process more than 300,000
sensor streams efficiently.

At last, the tables show that our system achieves excellent
scalability. For both single and cluster configuration, the
sizeup (see (5)) of m times input is much less than m.
Particularly for the cluster, when the input stream increases
by 6 times (N, = 262, 500), the processing time only increases
by less than 2 (1.72) times. The results mean that the TD
increases much more slowly than input data size and our
system works better in processing larger input stream. At
the same time, the two tables also show that the processing
capability of cluster is much better than single node. For
example, when the number of input stream sensors is 150,000,
the execution time in cluster is 0.575, compared to 2.440

in single node. The best throughput in cluster (175 MB/s) is
more than 3 times the one in single node (53 MB/s). It proves
our system achieves good flexibility and elastic scalability:
it can adapt to various different application scenarios and
requirements by adding computing nodes.

To sum up, the results demonstrate excellent scalability
regarding both the size of input stream and number of nodes.

6. Conclusion and Future Work

To effectively process massive streaming IOT data, the
paper presents a large-scale real-time semantic processing
framework for various IOT applications. According to the
framework, we have implemented an elastic streaming engine
based on popular large-scale distributed computing platform
SPARK. Based on the engine, a typical use case on home
environment monitoring is given to illustrate the efficiency
of our engine. The results show that our system can scale
for large number of sensors streams with different types of
IOT applications. For future work, we are planning to deploy
spatial semantic support in our distributed semantic engine
to process all kinds of location-based IOT applications such
as taxi service and parking service.
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Appendices

We provide the SPARQL queries used in the experimental

section of streaming semantic query.

A. 10T Streaming Semantic Query Examples
PREFIX p: <http://hem.org/predicate#>.
Ql: SELECT?type?value FROM STREAM
<http://hem.org/streams/home> WHERE {
<http://hem.org/room#bedroom,> p:hasSensor
?sensor.?sensor p:valueType?type.}
Q2: SELECT?value FROM STREAM
<http://hem.org/streams/home> WHERE {
<http://hem.org/room#bedroom > p:hasSensor
?sensor.?sensor p:hasValue?value.2sensor p:valueType
"PM2.5}
Q3: SELECT?room?value FROM STREAM
<http://hem.org/streams/home> WHERE {?room
p:hasSensor?sensor.?sensor p:hasValue?value.?sensor
p:valueType ‘CO’}
Q4: SELECT?sensor?value FROM STREAM
<http://hem.org/streams/home> WHERE {
? sensor p:hasValue?value.?sensor p:valueType "SO,’}
Q5: SELECT?room?time FROM STREAM
<http://hem.org/streams/home> WHERE {?room
p:hasSensor?sensor.?sensor p:hasValue?value.?sensor
p:valueType "humidity ’?sensor p:samplingTime
?time.}
Q6: SELECT?value?time FROM STREAM
<http://hem.org/streams/home> WHERE {
<http://hem.org/room#bedroom > p:hasSensor
?sensor.?sensor p:hasValue?value.2sensor p:valueType

’temp.2sensor p:samplingTime?time.}

B. IOT Streaming Semantic Reasoning
Example

See Table 4.
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TABLE 4: Human comfort table.

HC index range Level HC description
86~88 +4 Very hot
80~85 +3 Hot
76~79 +2 Warm
71~75 +1 Slightly warm
59~70 0 Comfortable
51~58 -1 Slightly cool
39~50 -2 Cool
26~38 -3 Cold

<25 -4 Very cold
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