43 research outputs found

    Epigenetic Activation of ASCT2 in the Hippocampus Contributes to Depression-Like Behavior by Regulating D-Serine in Mice

    Get PDF
    The roles of D-serine in depression are raised concerned recently as an intrinsic co-agonist for the NMDA receptor. However, the mechanisms underlying its regulation are not fully elucidated. ASCT2 is a Na+-dependent D-serine transporter. We found that decreased D-serine and increased hippocampal ASCT2 levels correlated with chronic social defeat stress (CSDS) in mice. Lentivirus-mediated shRNA-mediated knockdown of ASCT2 and the administration of exogenous D-serine in the hippocampus alleviated CSDS-induced social avoidance and immobility. In vivo and in vitro experiments revealed that upregulation of ASCT2 expression in CSDS was regulated through histone hyper-acetylation, not DNA methylation in its promoter region. Immunohistochemistry demonstrated the co-localization of ASCT2 and D-serine. Uptake of D-serine by ASCT2 was demonstrated by in vivo and in vitro experiments. Our results indicate that CSDS induces ASCT2 expression through epigenetic activation and decreases hippocampal D-serine levels, leading to social avoidance, and immobility. Thus, targeting D-serine transport represents an attractive new strategy for treating depression

    Deficiency of Antinociception and Excessive Grooming Induced by Acute Immobilization Stress in Per1 Mutant Mice

    Get PDF
    Acute stressors induce changes in numerous behavioral parameters through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Several important hormones in paraventricular nucleus of the hypothalamus (PVN) play the roles in these stress-induced reactions. Corticotropin-releasing hormone (CRH), arginine-vasopressin (AVP) and corticosterone are considered as molecular markers for stress-induced grooming behavior. Oxytocin in PVN is an essential modulator for stress-induced antinociception. The clock gene, Per1, has been identified as an effecter response to the acute stresses, but its function in neuroendocrine stress systems remains unclear. In the present study we observed the alterations in grooming and nociceptive behaviors induced by acute immobilization stress in Per1 mutant mice and other genotypes (wild types and Per2 mutant). The results displayed that stress elicited a more robust effect on grooming behavior in Per1 mutant mice than in other genotypes. Subsequently, the obvious stress-induced antinociception was observed in the wild-type and Per2 mutant mice, however, in Per1 mutant, this antinociceptive effects were partially-reversed (mechanical sensitivity), or over-reversed to hyperalgesia (thermal sensitivity). The real-time qPCR results showed that in PVN, there were stress-induced up-regulations of Crh, Avp and c-fos in all of genotypes; moreover, the expression change of Crh in Per1 mutant mice was much larger than in others. Another hormonal gene, Oxt, was up-regulated induced by stress in wild-type and Per2 mutant but not in Per1 mutant. In addition, the stress significantly elevated the serum corticosterone levels without genotype-dependent differences, and accordingly the glucocorticoid receptor gene, Nr3c1, expressed with a similar pattern in PVN of all strains. Taken together, the present study indicated that in acute stress treated Per1 mutant mice, there are abnormal hormonal responses in PVN, correlating with the aberrant performance of stress-induced behaviors. Therefore, our findings suggest a novel functional role of Per1 in neuroendocrine stress system, which further participates in analgesic regulation

    Transcriptome Sequencing Reveals Candidate NF-kappa B Target Genes Involved in Repeated Cocaine Administration

    No full text
    Background: Drug-induced alterations in gene expression play an important role in the development of addictive behavior. Numerous transcription factors have been implicated in mediating the gene expression changes that occur in drug addiction. Nuclear factor kappa B is an inducible transcription factor complex that is rapidly activated by diverse stimuli. Methods: We performed next-generation high-throughput sequencing of the prefrontal cortex in a mouse model of repeated cocaine administration combined with pharmacological nuclear factor kappa B inhibition to identify nuclear factor kappa B target genes that participate in the cocaine addiction process. Results: We found that the nuclear factor kappa B antagonist sodium diethyldithiocarbamate trihydrate significantly reversed the cocaine-induced expression changes of the amphetamine addiction pathway. Genes that demonstrated differential expression in response to cocaine treatment that was also reversed by sodium diethyldithiocarbamate trihydrate were enriched for the axon guidance pathway. Furthermore, the nuclear factor kappa B homo-dimer motif could be mapped to 86 of these sodium diethyldithiocarbamate trihydrate-reversed genes, which were also enriched for axon guidance. Conclusions: We suggest that nuclear factor kappa B directly modifies the expression of axon guidance pathway members, leading to cocaine sensitization. Our findings reveal the role of prefrontal cortex nuclear factor kappa B activity in addiction and uncover the molecular mechanisms by which nuclear factor kappa B drives changes in the addicted brain

    Whole-Exome Sequencing Identified a Novel Compound Heterozygous Genotype in ASL in a Chinese Han Patient with Argininosuccinate Lyase Deficiency

    No full text
    Pathogenic variants in the argininosuccinate lyase (ASL) gene have been shown to cause argininosuccinate lyase deficiency (ASLD); therefore, sequencing analysis offers advantages for prenatal testing and counseling in families afflicted with this condition. Here, we performed a genetic analysis of an ASLD patient and his family with an aim to offer available information for clinical diagnosis. The research subjects were a 23-month-old patient with a high plasma level of citrulline and his unaffected parents. Whole-exome sequencing identified potential related ASL gene mutations in this trio. Enzymatic activity was detected spectrophotometrically by a coupled assay using arginase and measuring urea production. We identified a novel nonsynonymous mutation (c.206A>G, p.Lys69Arg) and a stop mutation (c.637C>T, p.Arg213) in ASL in a Chinese Han patient with ASLD. The enzymatic activity of a p.Lys69Arg ASL construct in human embryonic kidney 293T cells was significantly reduced compared to that of the wild-type construct, and no significant activity was observed for the p.Arg213 construct. Compound heterozygous p.Lys69Arg and p.Arg213 mutations that resulted in reduced ASL enzyme activity were found in a patient with ASLD. This finding expands the clinical spectrum of ASL pathogenic variants

    Dynamic Expression Changes in the Transcriptome of the Prefrontal Cortex after Repeated Exposure to Cocaine in Mice

    Get PDF
    Prefrontal cortex (PFC)-dependent functions, such as executive function, explicit learning, and memory, are negatively affected in cocaine abusers and experimental animal models of cocaine treatment. However, its molecular mechanisms are less understood. In the present study, we performed transcriptome profiling of the dynamic changes in the PFC after repeated cocaine administration in mice. We found 463, 14, and 535 differentially expressed genes (DEGs) at 2 h, 24 h, and 7 days, respectively, after the withdrawal of chronic cocaine treatment. Time-series correlation analysis identified 5 clusters of statistically significant expression patterns. The expression levels of DEGs in Clusters 1 and 5 exhibited a gradual or fluctuant decrease, Cluster 2 exhibited an initial increase followed by a decrease or return to the baseline level, and Clusters 3 and 4 exhibited a fluctuant increase in the expression of DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that genes related to oxidative phosphorylation, ribosomes, and neurodegenerative disorder were enriched in Cluster 1; genes related to the mitogen activated protein kinase (MAPK), transforming growth factor (TGF)-beta, insulin signaling, and circadian pathways were enriched in Cluster 2; genes related to plasticity-related pathways were enriched in Clusters 3 and 4; and genes related to the proteasome were enriched in Cluster 5. Our results suggest that maladaptive neural plasticity associated with psychostimulant dependence may be an ongoing degenerative process with dynamic changes in the gene network at different stages of withdrawal. Furthermore, it could be helpful to develop new therapeutic approaches according to different periods of abstinence.</p

    Clock-controlled StAR's expression and corticosterone production contribute to the endotoxemia immune response

    No full text
    Increased studies have revealed that core mammalian clock genes regulate immune functions. Previously, we reported Per2(m/m) mice displayed a down-regulated circadian immune response to lipopolysaccharide (LPS) challenge. However, the mediators between Per2 and immune function and their underlying mechanisms remain unclear. In this study, serum corticosterone (CORT), a hormone which played a crucial role in immune suppression, was found to be significantly increased in Per2(m/m) mice compared with the one in wild-type mice following LPS administration at ZT3 and ZT8. The elevated level of serum CORT was correlated with their higher survival rate, which could be further suppressed by glucocorticoid receptor antagonist. Expression of StAR, a rate-limiting enzyme in CORT synthesis, as well as the expression of core clock genes (Clock/Bmal1), was more strongly induced and longer lasting in Per2(m/m) mice in contrast to the ones in control mice after LPS injection. Additionally, the binding of CLOCK and BMAL1 to StAR&#39;s promoter was elevated after LPS administration, and the binding was higher in Per2(m/m) mice. Furthermore, loss of Clock function resulted in lower survival and failed to induce the serum CORT production and StAR expression in Clock(m/m) mice following LPS administration. Our results revealed that CORT, regulated by Bmal1/Clock transcriptional activation of StAR&#39;s expression, could function as a mediator between clock system and immune response and contribute to the endotoxemia resistance in Per2(m/m) mice.</p

    Transcriptome profiles of corticosterone-induced cytotoxicity reveals the involvement of neurite growth-related genes in depression

    No full text
    Corticosterone (CORT), the main HPA-axis glucocorticoid hormone in rodents, is involved in the regulation of animal stress responses. However, the neural mechanisms underlying the effects of corticosteroids on depression are yet to be elucidated. We found that fluoxetine reversed neurite growth inhibition induced by COAT in PC12 cells, a widely used model system for neurobiological and neurotoxicological studies. Transcriptome profiling showed that 1,609 genes were up-regulated, whereas 1,764 genes were down-regulated significantly in the CORT group in comparison with the Control group. Of them, the expression of 589 DEGs was reversed after fluoxetine treatment, and genes related to cell morphogenesis, neurite growth, and immune function were involved in the neuroprotective effect of fluoxetine against CORT. Furthermore, expression of neurite growth-related genes, such as such as Calpain 2 (Capn2), vesicle-associated membrane protein 7 (Vamp7) and C-type natriuretic peptide (Cnp), altered in a brain region- or treatment-specific manner in the animal models of depression. Therefore, the interaction between stress, glucocorticoids, and neurite growth inhibition may be a candidate pathophysiology underlying major depressive disorder (MDD), and the identification of Capn2, Vamp7 and Cop might provide insight into treatment of MDD

    Regulation of Peripheral Clock to Oscillation of Substance P Contributes to Circadian Inflammatory Pain

    No full text
    Background: The daily fluctuations of many physiologic and behavioral parameters are differentially influenced by either central or peripheral clocks in mammals. Since substance P (SP) oscillates in some brain tissues and plays an indispensable role in modulating inflammatory pain at the spinal level, we speculated that SP mediates circadian nociception transmission at the spinal level

    Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat

    No full text
    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches
    corecore