98 research outputs found

    Catalytic Hydrotreatment of Biomass-Derived Fast Pyrolysis Liquids Using Ni and Cu-Based PRICAT Catalysts

    Get PDF
    Biomass-derived fast pyrolysis liquids (PLs) are not directly applicable as transportation fuels due to their high oxygen content and limited storage stability. Catalytic hydrotreatment is an efficient technology to convert such PLs to finished fuels or intermediates that can be used as a co-feed for existing oil refinery units. In this paper, we report catalyst screening studies for the mild hydrotreatment of PLs using commercially available Ni and Cu-based PRICAT catalysts at rather mild conditions (200 °C, initial 140 bar H2pressure) in a batch setup for 4 h. Among all catalysts, PRICAT NI 62/15 showed the best performance for mild catalytic hydrotreatment in terms of product properties (highest H/C ratio and lowest TG residue). The best catalysts were also tested for deep hydrotreatment at more severe conditions (350 °C, initial 100 bar H2pressure). Here, the PRICAT NI catalysts showed better performance than the benchmark Picula Ni-Mo catalyst when considering oil yield and H/C ratio. Advantageously, the hydrogen consumption during deep hydrotreatment is also reduced, rationalized by a lower methanation activity

    Selective Demethoxylation of Guaiacols to Phenols using Supported MoO 3 Catalysts

    Get PDF
    Lignin-derived monomers with methoxy substituents are abundantly present in bioliquids derived from lignocellulosic biomass. Examples are the products obtained from the reductive catalytic fractionation of lignin (RCF) and pyrolysis of lignocellulosic biomass and hydrotreated products thereof. An attractive valorization step for these liquids involves demethoxylation to obtain alkylated phenols through selective catalytic hydrodeoxygenation (HDO). Within the context of sustainable chemistry, there is a strong drive to use cheap, non-precious metal catalysts for this purpose. In this study, the HDO of guaiacol (5 wt% in toluene) was investigated in a continuous fixed-bed reactor at 380 °C, 20 bar over supported MoO3 catalysts. MoO3 (5 %) supported on TiO2 (P25) was shown to give superior performance compared with MoO3 supported on anatase TiO2, Al2O3, SiO2, Nb2O5, CeO2, and ZrO2. Additional studies involving variation of the Mo loading and process conditions were performed, and the highest selectivity to demethoxylated phenolics like phenol and methylated phenols was 82 % at 97 % conversion of guaiacol. Both 4-n-propylguaiacol and a realistic guaiacols-rich feed isolated from a representative pyrolysis oil were also successfully demethoxylated with the 5 % MoO3/TiO2 catalyst

    Expression of GSK-3β in renal allograft tissue and its significance in pathogenesis of chronic allograft dysfunction

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To explore the expression of Glycogen synthase kinase 3 beta (GSK-3β) in renal allograft tissue and its significance in the pathogenesis of chronic allograft dysfunction.</p> <p>Methods</p> <p>Renal allograft biopsy was performed in all of the renal allograft recipients with proteinuria or increased serum creatinine level who came into our hospital from January 2007 to December 2009. Among them 28 cases was diagnosed as chronic allograft dysfunction based on pahtological observation, including 21 males with a mean age of 45 ± 10 years old and 7 females with a mean age of 42 ± 9 years old. The time from kidney transplantation to biopsy were 1-9 (3.5) years. Their serum creatinine level were 206 ± 122 umol/L. Immunohistochemical assay and computer-assisted genuine color image analysis system (imagepro-plus 6.0) were used to detect the expression of GSK-3β in the renal allografts of 28 cases of recipients with chronic allograft dysfunction. Mean area and mean integrated optical density of GSK-3β expression were calculated. The relationship between expression level of GSK-3β and either the grade of inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft was analyzed. Five specimens of healthy renal tissue were used as controls.</p> <p>Results</p> <p>The expression level of the GSK-3β was significantly increased in the renal allograft tissue of recipients with chronic allograft dysfunction, compared to normal renal tissues, and GSK-3β expression became stronger along with the increasing of the grade of either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft tissue.</p> <p>Conclusion</p> <p>There might be a positive correlation between either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy and high GSK-3β expression in renal allograft tissue.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here:</p> <p><url>http://www.diagnosticpathology.diagnomx.eu/vs/9924478946162998</url>.</p

    Regulation of Reentrainment Function Is Dependent on a Certain Minimal Number of Intact Functional ipRGCs in rd Mice

    Get PDF
    Purpose. To investigate the effect of partial ablation of melanopsin-containing retinal ganglion cells (mcRGCs) on nonimage-forming (NIF) visual functions in rd mice lacking rods. Methods. The rd mice were intravitreally injected with different doses (100 ng/μl, 200 ng/μl, and 400 ng/μl) of immunotoxin melanopsin-SAP. And then, the density of ipRGCs was examined. After establishing the animal models with different degrees of ipRGC damage, a wheel-running system was used to evaluate their reentrainment response. Results. Intravitreal injection of melanopsin-SAP led to partial ablation of ipRGCs in a dose-dependent manner. The survival rates of ipRGCs in the 100 ng/μl, 200 ng/μl, and 400 ng/μl groups were 74.14% ± 4.15%, 39.25% ± 2.29%, and 38.38% ± 3.74%, respectively. The wheel-running experiments showed that more severe ipRGC loss was associated with a longer time needed for reentrainment. When the light/dark cycle was delayed by 8 h, the rd mice in the PBS control group took 4.67 ± 0.79 days to complete the synchronization with the shifted cycle, while those in the 100 ng/μl and 200 ng/μl groups required 7.90 ± 0.55 days and 11.00 ± 0.79 days to complete the synchronization with the new light/dark cycle, respectively. Conclusion. Our study indicates that the regulation of some NIF visual functions is dependent on a certain minimal number of intact functional ipRGCs

    Enhanced Catalytic Depolymerization of a Kraft Lignin by a Mechanochemical Approach

    Get PDF
    Kraft lignin is an abundantly available side product from the pulp and paper industry. It has a complex aromatic structure and has great potential to serve as a feedstock for renewable aromatic chemicals. In this communication, we show that a simple mechanochemical pretreatment (viz., ball milling) of commercial Indulin AT kraft lignin before solvent-free hydrotreatment results in a 15% increase in the recovered oil yield with 15% more alkylphenols and a 33% reduction in solids compared to the unmilled sample. This increase raises the carbon efficiency toward the oil based on elemental composition from 76 to 91%, respectively. This enhanced catalytic performance is attributed to improved heat transfer and allowing for better contact between the kraft lignin particles of reduced size and the catalyst particles, prompting enhanced depolymerization at an earlier stage of the reaction, thereby preventing charring

    Experimental studies on a combined pyrolysis/staged condensation/hydrotreatment approach to obtain biofuels and biobased chemicals

    Get PDF
    Fast pyrolysis is an efficient technology to convert lignocellulosic biomass to a liquid product. However, the high contents of oxygenated compounds and water hinder the direct utilization of pyrolysis oils. Here, we report an upgrading concept to obtain liquid products with improved product properties and enriched in valuable low molecular weight chemicals and particularly alkylphenols. It entails two steps, viz. i) pyrolysis with in-situ staged condensation at multiple kg scale followed by ii) a catalytic hydrotreatment of selected fractions using a Ru/C catalyst. Of all pyrolysis oil fractions after staged condensation, the product collected in a condenser equipped with an electrostatic precipitator (ESP) at 120 °C was identified as the most attractive for hydrotreatment when considering product yields and composition. The best hydrotreatment results (Ru/C, 350 °C, 100 bar H2, 4 h) were achieved using beechwood and walnut shells as feedstock, resulting in a high oil yield (about 64 wt% based on pyrolysis oil fraction intake) with a higher heating value of about 37 MJ/kg and enriched in alkylphenols (about 16 wt%). Overall, it was shown that the type of biomass (beech sawdust, walnut granulates, and pine/spruce sawdust) has a limited impact on liquid and alkylphenols yields which implies feedstock flexibility of this integrated concept

    Evaluation of LOXL1 polymorphisms in exfoliation syndrome in a Chinese population

    Get PDF
    Purpose: To evaluate the association profiles of the lysyl oxidase-like 1 (LOXL1) gene polymorphisms with exfoliation syndrome in a Chinese population. Methods: Fifty unrelated patients with exfoliation syndrome and 125 control subjects were included. Genotypes of the three single nucleotide polymorphisms (SNPs) of LOXL1 (rs1048661, rs3825942, and rs2165241) were analyzed by direct sequencing, and a case-control association study was performed. Results: The three SNPs were significantly associated with exfoliation syndrome (XFS) and exfoliation glaucoma (XFG) individually. After controlling for rs3825942 and rs2165241, the association between rs1048661 and XFS/XFG remained significant (p=3.6x10(-7)). At this SNP, the T allele and TT genotype conferred a 7.59-(95% confidence interval [CI]: 3.87-14.89, p=6.95x10(-11)) and 8.69-(95% CI: 4.15-18.20, p&lt;1.00x10(-7)) fold increased risk to the disease. The alleles of T at rs1048661 and C at rs2165241 were found to be risk alleles in Chinese subjects, which were opposite to Caucasian individuals. The haplotypes T-G, defined by SNPs rs1048661 and rs3825942, and T-C by SNPs rs1048661 and rs2165241, were also significantly associated with the disorder. However when the genotypic or allelic frequencies of the three SNPs were compared between XFS and XFG, no significant difference was detected. Conclusions: LOXL1 is a susceptibility gene of XFS/XFG in the Chinese population, and the association is mainly attributed to SNP rs1048661. The risk alleles of rs1048661 and rs2165241 in Chinese subjects were found to be opposite to that of Caucasians. The genotypic and allelic distributions of these SNPs are similar between XFS and XFG.Biochemistry &amp; Molecular BiologyOphthalmologySCI(E)30ARTICLE250-522349-23571
    corecore