51 research outputs found

    Thermodynamic Property Study of Nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H Systems by High Pressure DSC Method

    Get PDF
    Mg, Ni, and Cu nanoparticles were synthesized by hydrogen plasma metal reaction method. Preparation of Mg2Ni and Mg2Cu alloys from these Mg, Ni, and Cu nanoparticles has been successfully achieved in convenient conditions. High pressure differential scanning calorimetry (DSC) technique in hydrogen atmosphere was applied to study the synthesis and thermodynamic properties of the hydrogen absorption/desorption processes of nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H systems. Van’t Hoff equation of Mg-Ni-H system as well as formation enthalpy and entropy of Mg2NiH4 was obtained by high pressure DSC method. The results agree with the ones by pressure-composition isotherm (PCT) methods in our previous work and the ones in literature

    Integrating PtNi nanoparticles on NiFe layered double hydroxide nanosheets as a bifunctional catalyst for hybrid sodium-air batteries

    Get PDF
    Hybrid sodium-air batteries (HSABs) are emerging systems for next-generation energy storage owing to their high theoretical energy density, high specific capacity, low cost, and environmental friendliness. However, the ungratified energy efficiency, large overpotential, and poor cycling stability associated with the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) at air electrodes hamper their further development. Herein, we report a facile electrodeposition method to construct three-dimensional nickel defect-rich nickel-iron layered double hydroxide nanosheets decorated with platinum-nickel alloyed nanoparticles grown on macroporous nickel foam substrates (PtNi/NixFe LDHs) as a binder-free electrocatalyst. The optimal catalyst (Pt3Ni1/NixFe LDHs) demonstrates a low overpotential (265 mV at the current density of 10 mA cm-2), a small Tafel slope (22.2 mV dec-1) towards the OER and a high half-wave potential (0.852 V) for ORR, as well as superior long-term stability in comparison to commercial catalysts. Theoretical calculations revealed that the Ni-top site of Pt3Ni1/NixFe LDHs works as an active site for enhanced OER/ORR activities. The fabricated HSAB with Pt3Ni1/NixFe LDHs as the air cathode displayed not only an initial low overpotential gap (0.50 V) but also superior rechargeability and structure stability with high round-trip efficiency (∼79.9%) of over 300 cycles. These results provide a novel design of bifunctional and binder-free catalyst as the cathode for metal-air batteries. This journal i

    Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage

    No full text
    Mg-based materials have been investigated as hydrogen storage materials, especially for possible onboard storage in fuel cell vehicles for decades. Recently, with the development of large-scale fuel cell technologies, the development of Mg-based materials as stationary storage to supply hydrogen to fuel-cell components and provide electricity and heat is becoming increasingly promising. In this work, numerical analysis of heat balance management for stationary solid oxide fuel cell (SOFC) systems combined with MgH2 materials based on a carbon-neutral design concept was performed. Waste heat from the SOFC is supplied to hydrogen desorption as endothermic heat for the MgH2 materials. The net efficiency of this model achieves 82% lower heating value (LHV), and the efficiency of electrical power output becomes 68.6% in minimizing heat output per total energy output when all available heat of waste gas and system is supplied to warm up the storage. For the development of Mg-based hydrogen storage materials, various nano-processing techniques have been widely applied to synthesize Mg-based materials with small particle and crystallite sizes, resulting in good hydrogen storage kinetics, but poor thermal conductivity. Here, three kinds of Mg-based materials were investigated and compared: 325 mesh Mg powers, 300 nm Mg nanoparticles synthesized by hydrogen plasma metal reaction, and Mg50Co50 metastable alloy with body-centered cubic structure. Based on the overall performances of hydrogen capacity, absorption kinetics and thermal conductivity of the materials, the Mg nanoparticle sample by plasma synthesis is the most promising material for this potential application. The findings in this paper may shed light on a new energy conversion and utilization technology on MgH2-SOFC combined concept

    Recent advances in efficient and scalable solar hydrogen production through water splitting

    No full text
    Abstract Solar hydrogen production through water splitting is the most important and promising approach to obtaining green hydrogen energy. Although this technology developed rapidly in the last two decades, it is still a long way from true commercialization. In particular, the efficiency and scalability of solar hydrogen production have attracted extensive attention in the field of basic research. Currently, the three most studied routes for solar hydrogen production include photocatalytic (PC), photoelectrochemical (PEC), and photovoltaic-electrochemical (PV-EC) water splitting. In this review, we briefly introduce the motivation of developing green hydrogen energy, and then summarize the influential breakthroughs on efficiency and scalability for solar hydrogen production, especially those cases that are instructive to practical applications. Finally, we analyze the challenges facing the industrialization of hydrogen production from solar water splitting and provide insights for accelerating the transition from basic research to practical applications. Overall, this review can provide a meaningful reference for addressing the issues of efficiency improvement and scale expansion of solar hydrogen production, thereby promoting the innovation and growth of renewable hydrogen energy industry. Graphical Abstrac

    Ammonium transport proteins with changes in one of the conserved pore histidines have different performance in ammonia and methylamine conduction

    Get PDF
    Two conserved histidine residues are located near the mid-point of the conduction channel of ammonium transport proteins. The role of these histidines in ammonia and methylamine transport was evaluated by using a combination of in vivo studies, molecular dynamics (MD) simulation, and potential of mean force (PMF) calculations. Our in vivo results showed that a single change of either of the conserved histidines to alanine leads to the failure to transport methylamine but still facilitates good growth on ammonia, whereas double histidine variants completely lose their ability to transport both methylamine and ammonia. Molecular dynamics simulations indicated the molecular basis of the in vivo observations. They clearly showed that a single histidine variant (H168A or H318A) of AmtB confines the rather hydrophobic methylamine more strongly than ammonia around the mutated sites, resulting in dysfunction in conducting the former but not the latter molecule. PMF calculations further revealed that the single histidine variants form a potential energy well of up to 6 kcal/mol for methylamine, impairing conduction of this substrate. Unlike the single histidine variants, the double histidine variant, H168A/H318A, of AmtB was found to lose its unidirectional property of transporting both ammonia and methylamine. This could be attributed to a greatly increased frequency of opening of the entrance gate formed by F215 and F107, in this variant compared to wild-type, with a resultant lowering of the energy barrier for substrate to return to the periplasm

    Mg-Based Hydrogen Absorbing Materials for Thermal Energy Storage—A Review

    No full text
    Utilization of renewable energy such as solar, wind, and geothermal power, appears to be the most promising solution for the development of sustainable energy systems without using fossil fuels. Energy storage, especially to store the energy from fluctuating power is quite vital for smoothing out energy demands with peak/off-peak hour fluctuations. Thermal energy is a potential candidate to serve as an energy reserve. However, currently the development of thermal energy storage (TES) by traditional physical means is restricted by the relatively low energy density, high temperature demand, and the great thermal energy loss during long-period storage. Chemical heat storage is one of the most promising alternatives for TES due to its high energy density, low energy loss, flexible temperature range, and excellent storage duration. A comprehensive review on the development of different types of Mg-based materials for chemical heat storage is presented here and the classic and state-of-the-art technologies are summarized. Some related chemical principles, as well as heat storage properties, are discussed in the context. Finally, some dominant factors of chemical heat storage materials are concluded and the perspective is proposed for the development of next-generation chemical heat storage technologies

    Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials

    No full text
    Magnesium (Mg)-based materials are promising candidates for hydrogen storage due to the low cost, high hydrogen storage capacity and abundant resources of magnesium for the realization of a hydrogen society. However, the sluggish kinetics and strong stability of the metal-hydrogen bonding of Mg-based materials hinder their application, especially for onboard storage. Many researchers are devoted to overcoming these challenges by numerous methods. Here, this review summarizes some advances in the development of Mg-based hydrogen storage materials related to downsizing and catalysis. In particular, the focus is on how downsizing and catalysts affect the hydrogen storage capacity, kinetics and thermodynamics of Mg-based hydrogen storage materials. Finally, the future development and applications of Mg-based hydrogen storage materials is discussed

    Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure

    No full text
    TiVMn and TiCrMn alloys are promising hydrogen storage materials for onboard application due to their high hydrogen absorption content. However, the traditional synthesis method of melting and continuous necessary heat treatment and activation process are energy- and time-consuming. There is rarely any report on kinetics improvement and nanoprocessing in TiVMn- and TiCrMn-based alloys. Here, through ball milling with carbon black as additive, we synthesized face-centered cubic (FCC) structure TiVMn- and TiCrMn-based nanoalloys with mean particle sizes of around a few to tens of μm and with the crystallite size just 10 to 13 nm. Differential scanning calorimetry (DSC) measurements under hydrogen atmosphere of the two obtained TiVMn and TiCrMn nanoalloys show much enhancement on the hydrogen absorption performance. The mechanism of the property improvement and the difference in the two samples were discussed from microstructure and morphology aspects. The study here demonstrates a new potential methodology for development of next-generation hydrogen absorption materials
    • …
    corecore