18 research outputs found

    Determination of Acquisition Frequency for Intrafractional Motion of Pancreas in CyberKnife Radiotherapy

    Get PDF
    Purpose. To report the characteristics of pancreas motion as tracked using implanted fiducials during radiotherapy treatments with CyberKnife. Methods and Materials. Twenty-nine patients with pancreas cancer treated using CyberKnife system were retrospectively selected for this study. During the treatment, the deviation is examined every 3-4 nodes (~45 s interval) and compensated by the robot. The pancreas displacement calculated from X-ray images acquired within the time interval between two consecutive couch motions constitute a data set. Results. A total of 498 data sets and 4302 time stamps of X-ray images were analyzed in this study. The average duration for each data set is 634 s. The location of the pancreas becomes more dispersed as the time elapses. The acquisition frequency depends on the prespecified movement distance threshold of pancreas. If the threshold between two consecutive images is 1 mm, the acquisition frequency should be less than 30 s, while if the threshold is 2 mm, the acquisition frequency can be around 1 min. Conclusions. The pancreas target moves significantly and unpredictably during treatment. Effective means of compensating the intrafractional movement is critical to ensure adequate dose coverage of the tumor target

    Chinese liquor extract attenuates oxidative damage in HepG2 cells and extends lifespan of Caenorhabditis elegans

    No full text
    Abstract Chinese liquor is obtained from various grains by fermentation and complex processes. Chinese liquor contains complex ingredients. However, the low contents and presence of ethanol restricted the flavor substances function study. In current study, a flavor substance, homofuraneol (HOMO) was isolated from the Chinese liquor and the potency against H2O2‐induced oxidative damage in HepG2 cells and lifespan‐extending ability in Caenorhabditis elegans were explored. Results indicated that HOMO increased the HepG2 cells cytoactive by eliminating excessive intracellular free radicals, upregulating antioxidant enzyme activity and inhibiting the phosphorylation of mitogen‐activated protein kinases (MAPKs) pathway. Further study revealed that HOMO extended the lifespan of N2 nematodes under normal and oxidative stress conditions. Moreover, RT‐PCR results showed that paraquat activated the expression of PMK‐1 and SKN‐1 was significantly regulated by HOMO. Of note, our results indicated that HOMO recovered the redox states of HepG2 cells by targeting MAPKs and upregulating the stress resistance of nematodes by modulating the expression of stress‐responsive genes, such as DAF‐16

    4-Hydroxybenzyl-substituted amino acid derivatives from Gastrodia elata

    Get PDF
    Seven new 4-hydroxybenzyl-substituted amino acid derivatives (1−7), together with 11 known compounds, were isolated from an aqueous extract of the rhizomes of Gastrodia elata Blume. Their structures were determined by spectroscopic and chemical methods. Compounds 1−3 are pyroglutamate derivatives containing 4-hydroxybenzyl units at the N atom and 4−7 are the first examples of natural products with the 4-hydroxybenzyl unit linked via a thioether bond to 2-hydroxy-3-mercaptopropanoic acid (4−6) and 2-hydroxy-4-mercaptobutanoic acid (7), which would be biogenetically derived from cysteine and homocysteine, respectively. The structures of 1 and 2 were verified by synthesis, while the absolute configurations of 4, 5 and 7 were assigned using Mosher’s method based on the MPA determination rule of ΔδRS values. The known compound 4-(hydroxymethyl)-5-nitrobenzene-1,2-diol (8) exhibited activity against Fe2+-cysteine induced rat liver microsomal lipid peroxidation with IC50 values of 9.99×10−6 mol/L

    Image_3_Targeted metabolome analysis reveals accumulation of metabolites in testa of four peanut germplasms.JPEG

    No full text
    Cultivated peanut (Arachis hypogaea L.) is an important source of edible oil and protein. Peanut testa (seed coat) provides protection for seeds and serves as a carrier for diversity metabolites necessary for human health. There is significant diversity available for testa color in peanut germplasms. However, the kinds and type of metabolites in peanut testa has not been comprehensively investigated. In this study, we performed metabolite profiling using UPLC-MS/MS for four peanut germplasm lines with different testa colors, including pink, purple, red, and white. A total of 85 metabolites were identified in four peanuts. Comparative metabolomics analysis identified 78 differentially accumulated metabolites (DAMs). Some metabolites showed significant correlation with other metabolites. For instance, proanthocyanidins were positively correlated with cyanidin 3-O-rutinoside and malvin, and negatively correlated with pelargonidin-3-glucoside. We observed that the total proanthocyanidins are most abundant in pink peanut variety WH10. The red testa accumulated more isoflavones, flavonols and anthocyanidins compared with that in pink testa. These results provided valuable information about differential accumulation of metabolites in testa with different color, which are helpful for further investigation of the molecular mechanism underlying biosynthesis and accumulation of these metabolites in peanut.</p

    Table_2_Targeted metabolome analysis reveals accumulation of metabolites in testa of four peanut germplasms.XLSX

    No full text
    Cultivated peanut (Arachis hypogaea L.) is an important source of edible oil and protein. Peanut testa (seed coat) provides protection for seeds and serves as a carrier for diversity metabolites necessary for human health. There is significant diversity available for testa color in peanut germplasms. However, the kinds and type of metabolites in peanut testa has not been comprehensively investigated. In this study, we performed metabolite profiling using UPLC-MS/MS for four peanut germplasm lines with different testa colors, including pink, purple, red, and white. A total of 85 metabolites were identified in four peanuts. Comparative metabolomics analysis identified 78 differentially accumulated metabolites (DAMs). Some metabolites showed significant correlation with other metabolites. For instance, proanthocyanidins were positively correlated with cyanidin 3-O-rutinoside and malvin, and negatively correlated with pelargonidin-3-glucoside. We observed that the total proanthocyanidins are most abundant in pink peanut variety WH10. The red testa accumulated more isoflavones, flavonols and anthocyanidins compared with that in pink testa. These results provided valuable information about differential accumulation of metabolites in testa with different color, which are helpful for further investigation of the molecular mechanism underlying biosynthesis and accumulation of these metabolites in peanut.</p

    Image_5_Targeted metabolome analysis reveals accumulation of metabolites in testa of four peanut germplasms.JPEG

    No full text
    Cultivated peanut (Arachis hypogaea L.) is an important source of edible oil and protein. Peanut testa (seed coat) provides protection for seeds and serves as a carrier for diversity metabolites necessary for human health. There is significant diversity available for testa color in peanut germplasms. However, the kinds and type of metabolites in peanut testa has not been comprehensively investigated. In this study, we performed metabolite profiling using UPLC-MS/MS for four peanut germplasm lines with different testa colors, including pink, purple, red, and white. A total of 85 metabolites were identified in four peanuts. Comparative metabolomics analysis identified 78 differentially accumulated metabolites (DAMs). Some metabolites showed significant correlation with other metabolites. For instance, proanthocyanidins were positively correlated with cyanidin 3-O-rutinoside and malvin, and negatively correlated with pelargonidin-3-glucoside. We observed that the total proanthocyanidins are most abundant in pink peanut variety WH10. The red testa accumulated more isoflavones, flavonols and anthocyanidins compared with that in pink testa. These results provided valuable information about differential accumulation of metabolites in testa with different color, which are helpful for further investigation of the molecular mechanism underlying biosynthesis and accumulation of these metabolites in peanut.</p

    Table_1_Targeted metabolome analysis reveals accumulation of metabolites in testa of four peanut germplasms.XLSX

    No full text
    Cultivated peanut (Arachis hypogaea L.) is an important source of edible oil and protein. Peanut testa (seed coat) provides protection for seeds and serves as a carrier for diversity metabolites necessary for human health. There is significant diversity available for testa color in peanut germplasms. However, the kinds and type of metabolites in peanut testa has not been comprehensively investigated. In this study, we performed metabolite profiling using UPLC-MS/MS for four peanut germplasm lines with different testa colors, including pink, purple, red, and white. A total of 85 metabolites were identified in four peanuts. Comparative metabolomics analysis identified 78 differentially accumulated metabolites (DAMs). Some metabolites showed significant correlation with other metabolites. For instance, proanthocyanidins were positively correlated with cyanidin 3-O-rutinoside and malvin, and negatively correlated with pelargonidin-3-glucoside. We observed that the total proanthocyanidins are most abundant in pink peanut variety WH10. The red testa accumulated more isoflavones, flavonols and anthocyanidins compared with that in pink testa. These results provided valuable information about differential accumulation of metabolites in testa with different color, which are helpful for further investigation of the molecular mechanism underlying biosynthesis and accumulation of these metabolites in peanut.</p
    corecore