4 research outputs found

    N6-methyladenosine modification of the mRNA for a key gene in purine nucleotide metabolism regulates virus proliferation in an insect vector

    No full text
    Summary: The titer of viruses that persist and propagate in their insect vector must be high enough for transmission yet not harm the insect, but the mechanism of this dynamic balance is unclear. Here, expression of inosine monophosphate dehydrogenase (LsIMPDH), a rate-limiting enzyme for guanosine triphosphate (GTP) synthesis, is shown to be downregulated by increased levels of N6-methyladenosine (m6A) on LsIMPDH mRNA in rice stripe virus (RSV)-infected small brown planthoppers (SBPHs; Laodelphax striatellus), the RSV vector, which decreases GTP content, thus limiting viral proliferation. Moreover, planthopper methyltransferase-like protein 3 (LsMETTL3) and m6A reader protein LsYTHDF3 are found to catalyze and recognize the m6A on LsIMPDH mRNA, respectively, and cooperate in destabilizing LsIMPDH transcripts. Co-silencing assays show that negative regulation of viral proliferation by both LsMETTL3 and LsYTHDF3 is partially dependent on LsIMPDH. This distinct mechanism limits virus replication in an insect vector, providing a potential gene target to block viral transmission

    Reactions of Triticum urartu accessions to two races of the wheat yellow rust pathogen

    No full text
    Triticum urartu (AA, 2n = 2x = 14), a wild grass endemic to the Fertile Crescent (FC), is the progenitor of the A subgenome in common wheat. It belongs to the primary gene pool for wheat improvement. Here, we evaluated the yellow rust (caused by Puccinia striiformis f. sp. tritici, Pst) reactions of 147 T. urartu accessions collected from different parts of the FC. The reactions varied from susceptibility to strong resistance. In general, there were more accessions with stronger resistance to race CYR33 than to CYR 32. In most cases the main form of defense was a moderate resistance characterized by the presence of necrotic/chlorotic lesions with fewer Pst uredinia on the leaves. Forty two accessions displayed resistance to both races. Histological analysis showed that Pst growth was abundant in the compatible interaction but significantly suppressed by the resistant response. Gene silencing mediated by Barley stripe mosaic virus was effective in two T. urartu accessions with different resistance responses, indicating that this method can expedite future functional analysis of resistance genes. Our data suggest that T. urartu is a valuable source of resistance to yellow rust, and represents a model for studying the genetic, genomic and molecular basis underlying interaction between wheat and Pst. Keywords: Common wheat, Disease resistance, Gene silencing, Puccinia striiformi

    MicroRNAs activate gene transcription epigenetically as an enhancer trigger

    No full text
    <p>MicroRNAs (miRNAs) are small non-coding RNAs that function as negative gene expression regulators. Emerging evidence shows that, except for function in the cytoplasm, miRNAs are also present in the nucleus. However, the functional significance of nuclear miRNAs remains largely undetermined. By screening miRNA database, we have identified a subset of miRNA that functions as enhancer regulators. Here, we found a set of miRNAs show gene-activation function. We focused on miR-24-1 and found that this miRNA unconventionally activates gene transcription by targeting enhancers. Consistently, the activation was completely abolished when the enhancer sequence was deleted by TALEN. Furthermore, we found that miR-24-1 activates enhancer RNA (eRNA) expression, alters histone modification, and increases the enrichment of p300 and RNA Pol II at the enhancer locus. Our results demonstrate a novel mechanism of miRNA as an enhancer trigger.</p

    Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si

    No full text
    This letter reports a successful fabrication of room-temperature electrically injected AlGaN-based near-ultraviolet laser diode grown on Si. An Al-composition step down-graded AlN/AlGaN multilayer buffer was carefully engineered to not only tackle the huge difference in the coefficient of thermal expansion between AlGaN template and Si substrate, but also reduce the threading dislocation density caused by the large lattice mismatch. On top of the crack-free n-AlGaN template, high quality InGaN/AlGaN quantum wells were grown, sandwiched by waveguide and optical cladding layers, for the fabrication of edge-emitting laser diode. A dramatic narrowing of the electroluminescence spectral line-width, an elongated far-field pattern, and a clear discontinuity in the slope of light output power plotted as a function of the injection current provide an unambiguous evidence of lasing
    corecore