18 research outputs found

    Constraints on dolomite formation in a Late Palaeozoic saline alkaline lake deposit, Junggar Basin, north‐west China

    Get PDF
    Alkaline lakes (pH &gt; 9) are among the few modern sedimentary environments that are hydrochemically favourable for low-temperature dolomite formation. While Mg-clays and Mg-evaporites also form more easily in alkaline environments, few studies have focused on how the kinetically inhibited dolomite wins the competition for Mg2+. Here, a basin-wide survey of the distribution, paragenesis and stable C, O and Mg isotopes of main Mg-rich minerals in the Late Palaeozoic saline alkaline lake deposit of the north-west Junggar Basin, north-west China, is conducted to study the influence of the formation and diagenesis of eitelite, northupite and Mg-clays on dolomite formation. Large, isolated dolomite crystals (20 to 70 μm in diameter), show positive δ13C values (ranging from +1 to +7‰) and a restricted distribution in the mudstones of the lake-transitional zone. These crystals have been interpreted as organogenic dolomite driven by methanogenesis via fermentation of organic substrates. The δ18O values of dolomitic mudstones (from −7.4 to +3.4‰), calcitic mudstones (from −15.1 to −3.3‰) and bedded Na-carbonate evaporites (from +0.08 to +3.7‰), together with their Mg isotopic compositions, suggest that dolomite was not enriched in the most concentrated environments or during stages with most Mg sources, but in the organic-rich deposits containing few other authigenic Mg-rich minerals. Dolomite is at a competitive disadvantage for Mg2+ ions compared to Mg-evaporite and Mg-clay minerals due to its slow crystallization rates and the deficiency of micritic calcium carbonate precursors. However, it can nucleate and progressively grow into large crystals (&gt;20 μm) if bacterial methanogenesis could effectively lower porewater pH (&lt;8.5) and induce the dissolution of generated eitelite, northupite or Mg-clays. These findings suggest that high salinity and/or high alkalinity are not always favourable conditions for dolomite formation and highlight the active role of pH fluctuations in inducing low-temperature dolomite formation.</p

    Structural characteristics, antioxidant and hypoglycemic activities of polysaccharides from Mori Fructus based on different extraction methods

    Get PDF
    The mulberry (Mori Fructus), which is rich in many nutrients needed by the human body, serves as both food and medicine. Polysaccharides, which are considered to be important pharmacological components of mulberry, have received a lot of study for their structure and biological activity. In this study, six mulberry fruit polysaccharides (MFPs) were extracted by different extraction methods, and their physicochemical structures, antioxidant, and hypoglycemic biological activities were investigated and compared. According to the findings, MFP-III exhibited the best Îą-glucosidase and Îą-amylase inhibition, whereas MFP-IV had the strongest scavenging activity against DPPH and ABTS. Scanner electron microscopy (SEM) and high-performance liquid chromatography (HPLC) analysis showed that the apparent morphology and monosaccharide content of MFP were significantly impacted by the different extraction techniques. The results of experiments using Congo red, Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TG), and the Congo red experiment showed that the MFP functional groups, glycosidic bonds, triple helix structure, and thermal stability were not significantly different between the extraction methods. According to the aforementioned research, various extraction methods had different effects on the chemical composition and biological activity of mulberry polysaccharides. This information can provide a scientific basis for selecting suitable extraction methods to obtain mulberry polysaccharides with ideal biological activity

    Vernier Ring Based Pre-bond Through Silicon Vias Test in 3D ICs

    Get PDF
    Defects in TSV will lead to variations in the propagation delay of the net connected to the faulty TSV. A non-invasive Vernier Ring based method for TSV pre-bond testing is proposed to detect resistive open and leakage faults. TSVs are used as capacitive loads of their driving gates, then time interval compared with the fault-free TSVs will be detected. The time interval can be detected with picosecond level resolution, and digitized into a digital code to compare with an expected value of fault-free. Experiments on fault detection are presented through HSPICE simulations using realistic models for a 45 nm CMOS technology. The results show the effectiveness in the detection of time interval 10 ps, resistive open defects 0.2 kΊ above and equivalent leakage resistance less than 18 MΊ. Compared with existing methods, detection precision, area overhead, and test time are effectively improved, furthermore, the fault degree can be digitalized into digital code

    Stable Carbon and Oxygen Isotopic Features of Banded Travertines from the Xiagei Fissure Ridge System (Shangri-La, China)

    No full text
    Banded travertines are important parts of fissure ridge systems, but studies on geochemical characterization of banded travertines are limited. This study investigated the lithofacies and stable carbon and oxygen isotopic features of banded travertines from Xiagei (southwestern China) to examine their formation mechanisms. Petrographic analyses of the banded travertines revealed two lithotypes: thick-laminated palisade crystalline crust and thin-laminated composite crystalline crust. δ13C and δ18O of the Xiagei banded travertines range from 2.82‰ to 4.50‰ V-PDB, and from −25.86‰ to −20.90‰ V-PDB. Parent CO2 evaluation shows that the Xiagei banded travertines mainly received CO2 from the decarbonation of marine carbonates, but the contributions of magmatic CO2 and the dissolution of marine carbonates are also unneglectable. Significantly, the magmatic-derived CO2 might indicate that the delamination of the lithosphere along with the asthenosphere upwelling could be taking place in the eastern Tibetan plateau. Paleotemperature calculation shows that the Xiagei travertines were precipitated from moderate- to high-temperature hot springs (44.3 to 86.8 °C). Interestingly, the thick-laminated palisade crystalline crust and thin-laminated composite crystalline crust display calculated paleotemperature between 66.6 and 86.8 °C and between 56.6 and 77.7 °C, respectively, reflecting the great role of water temperature in controlling the lithofacies of banded travertines. A comparison between the banded travertines at Xiagei and other areas also shows temperature is a non-negligible factor controlling banded travertine precipitation. However, this does not mean that water temperature is the decisive controlling factor and more studies on banded travertines are still indispensable to disclose the potential factors controlling the factors/processes affecting banded travertine lithofacies. This study provides a good example for understanding the relationship between lithofacies and stable isotopic geochemical characteristics of travertine deposits

    Geochemical Characterization of Laminated Crystalline Crust Travertines Formed by Ca<sup>2+</sup>-Deficient Hot Springs at Sobcha (China)

    No full text
    Travertines formed of crystalline crust have been widely reported, but there has not been focus on their geochemical characteristics. We therefore carefully conducted a series of geochemical investigations and U-Th dating on a travertine mound mainly composed of crystalline crust from Sobcha (southwest China) to determine their geochemical features and geological implications. The Sobcha travertines dominantly consist of granular crystals and fan crystals and show δ13C from 3.4‰ to 4.9‰ V-PDB, δ18O from −26.7‰ to −23.7‰ V-PDB, and 87Sr/86Sr from 0.712458 to 0.712951. When normalized to PASS, the Sobcha travertines exhibit MREE enrichment relative to HREE and LREE, HREE enrichment relative to LREE, and positive Eu anomalies. The δ13C signatures and mother CO2 evaluation of the Sobcha travertines show that the Sobcha travertines were thermogene travertines largely receiving mother CO2 from (upper) mantle (i.e., magmatic CO2) or a mixture of soil-derived CO2 and CO2 related to carbonate decarbonation. The 87Sr/86Sr of the Sobcha travertines is out of the 87Sr/86Sr ranges of local deposits exposed at Sobcha and surrounding areas but is well matched with the mean 87Sr/86Sr of Nadi Kangri volcanic rocks which cropped out to the northeast of the studied travertines (over 20 km away). This might indicate the important role of the Nadi Kangri volcanic rocks in suppling Sr to the studied travertines, but more studies are required. The LREE depletion compared to MREE and HREE in the Sobcha travertines was interpreted to be caused by the difference in geochemical mobility between LREEs and HREEs during water–rock interaction at depth, while the MREE enrichment compared to HREE was considered to be most likely inherited from reservoir/aquifer rocks. The positive Eu anomalies of the Sobcha travertines may result from very high reservoir temperatures and/or preferential dissolution of Eu-rich minerals/rocks (especially plagioclase). The Sobcha travertine mounds displays no or very slight vertical variations in δ13C, 87Sr/86Sr, and REE patterns, indicating the compositional stability of mother CO2 and paleo-fluids. However, a significant vertical increase in δ18O was observed and was explained as the result of gradual water temperature decrease related to climate cooling, self-closure of the vents, or mound vertical growth. The findings in this study might help us better understand the deposition of crystalline crust in Ca2+-deficient hot spring systems

    Influences of different alkaline and acidic diagenetic environments on diagenetic evolution and reservoir quality of alkaline lake shales

    No full text
    Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin, and to reconstruct their differential diagenetic evolutional processes. The diagenetic environment of shales in the lake-central zone kept alkaline, which mainly underwent the early stage (Ro<0.5%) dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage (Ro0.5%) dominated by the replacement of Na-carbonates by reedmergnerite. The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments, with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals. The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment, evidenced by the formation of dolomite and zeolite, to a late acidic diagenetic environment, represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals. The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales. The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil. Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability, and are favorable “sweet spots” for shale oil exploitation and development

    Reseeding-Oriented Test Power Reduction for Linear-Decompression-Based Test Compression Architectures

    Get PDF
    Linear feedback shift register (LFSR) reseeding is an effective method for test data reduction. However, the test patterns generated by LFSR reseeding generally have high toggle rate and thus cause high test power. Therefore, it is feasible to fill X bits in deterministic test cubes with 0 or 1 properly before encoding the seed to reduce toggle rate. However, X-filling will increase the number of specified bits, thus increase the difficulty of seed encoding, what\u27s more, the size of LFSR will increase as well. This paper presents a test frame which takes into consideration both compression ratio and power consumption simultaneously. In the first stage, the proposed reseeding-oriented X-filling proceeds for shift power (shift filling) and capture power (capture filling) reduction. Then, encode the filled test cubes using the proposed Compatible Block Code (CBC). The CBC can X-ize specified bits, namely turning specified bits into X bits, and can resolve the conflict between low-power filling and seed encoding. Experiments performed on ISCAS\u2789 benchmark circuits show that our scheme attains a compression ratio of 94.1% and reduces capture power by at least 15% and scan-in power by more than 79.5%

    The Carbonate Platform Model and Reservoirs’ Origins of the Callovian-Oxfordian Stage in the Amu Darya Basin, Turkmenistan

    No full text
    The Calloviane-Oxfordian carbonates in the northeastern Amu Darya Basin of southeastern Turkmenistan are composed of medium- to thick-bedded, mostly grainy limestones with various skeletal (bivalves, brachiopods, echinoderms, foraminifera, corals, and sponge) and non-skeletal grains (intraclasts, ooids and peloids). Two facies zones, six standard facies belts and some microfacies types were recognized, and sedimentary model “carbonate ramp-rimmed platform” was proposed and established that can be compared with the classical carbonate sedimentary models. In this model, favorable reservoirs not only developed in the intraplatform shoal of open platform, or reef and shoal on the platform margin, but also in the patch reefs, shoal and mound facies on the upper slope. The reservoir’s pore space is dominated by intergranular and intragranular pores and fissure-pore reservoirs exist with medium porosity and medium to low permeability. Sedimentary facies and diagenetic dissolution are the key controlling factors for the development of high-quality reservoirs

    Crown Structure Metrics to Generalize Aboveground Biomass Estimation Model Using Airborne Laser Scanning Data in National Park of Hainan Tropical Rainforest, China

    No full text
    Forest aboveground biomass (AGB) is an important indicator for characterizing forest ecosystem structures and functions. Therefore, how to effectively investigate forest AGB is a vital mission. Airborne laser scanning (ALS) has been demonstrated as an effective way to support investigation and operational applications among a wide range of applications in the forest inventory. Moreover, three-dimensional structure information relating to AGB can be acquired by airborne laser scanning. Many studies estimated AGB from variables that were extracted from point cloud data, but few of them took full advantage of variables related to tree crowns to estimate the AGB. In this study, the main objective was to evaluate and compare the capabilities of different metrics derived from point clouds obtained from ALS. Particularly, individual tree-based alpha-shape, along with other traditional and commonly used plot-level height and intensity metrics, have been used from airborne laser scanning data. We took the random forest and multiple stepwise linear regression to estimate the AGB. By comparing AGB estimates with field measurements, our results showed that the best approach is mixed metrics, and the best estimation model is random forest (R2 = 0.713, RMSE = 21.064 t/ha, MAE = 15.445 t/ha), which indicates that alpha-shape may be a good alternative method to improve AGB estimation accuracy. This method provides an effective solution for estimating aboveground biomass from airborne laser scanning
    corecore