86 research outputs found

    Identification of a major QTL and candidate genes analysis for branch angle in rapeseed (Brassica napus L.) using QTL-seq and RNA-seq

    Get PDF
    IntroductionBranching angle is an essential trait in determining the planting density of rapeseed (Brassica napus L.) and hence the yield per unit area. However, the mechanism of branching angle formation in rapeseed is not well understood.MethodsIn this study, two rapeseed germplasm with extreme branching angles were used to construct an F2 segregating population; then bulked segregant analysis sequencing (BSA-seq) and quantitative trait loci (QTL) mapping were utilized to localize branching anglerelated loci and combined with transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qPCR) for candidate gene miningResults and discussionA branching angle-associated quantitative trait loci (QTL) was mapped on chromosome C3 (C3: 1.54-2.65 Mb) by combining BSA-seq as well as traditional QTL mapping. A total of 54 genes had SNP/Indel variants within the QTL interval were identified. Further, RNA-seq of the two parents revealed that 12 of the 54 genes were differentially expressed between the two parents. Finally, we further validated the differentially expressed genes using qPCR and found that six of them presented consistent differential expression in all small branching angle samples and large branching angles, and thus were considered as candidate genes related to branching angles in rapeseed. Our results introduce new candidate genes for the regulation of branching angle formation in rapeseed, and provide an important reference for the subsequent exploration of its formation mechanism

    Curing of Plasmid pXO1 from Bacillus anthracis Using Plasmid Incompatibility

    Get PDF
    The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome

    The Morphology, Dynamics and Potential Hotspots of Land Surface Temperature at a Local Scale in Urban Areas

    No full text
    Current characterization of the Urban Heat Island (UHI) remains insufficient to support the effective mitigation and adaptation of increasing temperatures in urban areas. Planning and design strategies are restricted to the investigation of temperature anomalies at a city scale. By focusing on Land Surface Temperature of Wuhan, China, this research examines the temperature variations locally where mitigation and adaptation would be more feasible. It shows how local temperature anomalies can be identified morphologically. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. They are first considered as noisy observations of the latent temperature patterns. The continuous latent patterns of the temperature are then recovered from these discrete observations by using the non-parametric Multi-Task Gaussian Process Modeling. The Multi-Scale Shape Index is then applied in the area of focus to extract the local morphological features. A triplet of shape, curvedness and temperature is formed as the criteria to extract local heat islands. The behavior of the local heat islands can thus be quantified morphologically. The places with critical deformations are identified as hotpots. The hotspots with certain yearly behavior are further associated with land surface composition to determine effective mitigation and adaptation strategies. This research can assist in the temperature and planning field on two levels: (1) the local land surface temperature patterns are characterized by decomposing the variations into fundamental deformation modes to allow a process-based understanding of the dynamics; and (2) the characterization at local scale conforms to planning and design conventions where mitigation and adaptation strategies are supposed to be more practical. The weaknesses and limitations of the study are addressed in the closing section

    The Morphology, Dynamics and Potential Hotspots of Land Surface Temperature at a Local Scale in Urban Areas

    No full text
    Current characterization of the Urban Heat Island (UHI) remains insufficient to support the effective mitigation and adaptation of increasing temperatures in urban areas. Planning and design strategies are restricted to the investigation of temperature anomalies at a city scale. By focusing on Land Surface Temperature of Wuhan, China, this research examines the temperature variations locally where mitigation and adaptation would be more feasible. It shows how local temperature anomalies can be identified morphologically. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. They are first considered as noisy observations of the latent temperature patterns. The continuous latent patterns of the temperature are then recovered from these discrete observations by using the non-parametric Multi-Task Gaussian Process Modeling. The Multi-Scale Shape Index is then applied in the area of focus to extract the local morphological features. A triplet of shape, curvedness and temperature is formed as the criteria to extract local heat islands. The behavior of the local heat islands can thus be quantified morphologically. The places with critical deformations are identified as hotpots. The hotspots with certain yearly behavior are further associated with land surface composition to determine effective mitigation and adaptation strategies. This research can assist in the temperature and planning field on two levels: (1) the local land surface temperature patterns are characterized by decomposing the variations into fundamental deformation modes to allow a process-based understanding of the dynamics; and (2) the characterization at local scale conforms to planning and design conventions where mitigation and adaptation strategies are supposed to be more practical. The weaknesses and limitations of the study are addressed in the closing section

    The origin of enhanced photocatalytic activities of hydrogenated TiO2 nanoparticles

    Get PDF
    The photocatalytic activity of semiconductors is largely governed by their light absorption, separation of photoinduced charge carriers and surface catalytically active sites, which are primarily controlled by the morphology, crystalline size, structure, and especially the electronic structure of photocatalysts. Black TiO 2 is recognized as one of the most promising visible-light photocatalysts, due to its significantly enhanced visible-light photocatalytic performance in comparison to intrinsic TiO 2 . In this work, black TiO 2 is synthesized through the hydrogenation process. The sample shows a TiO 2 @TiO 2-x core/shell structure which is attributed to hydrogenation. By using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and nuclear magnetic resonance (NMR) spectroscopy, we identified the featured midgap electronic states in black TiO 2 , which gave rise to the TiO 2-x shell layer. These states lead to the improvement of visible-light absorption and the separation of photoinduced charge carriers, which consequently result in remarkable enhanced photocatalytic activities in black TiO 2

    WO3 nanoflakes decorated with CuO clusters for enhanced photoelectrochemical water splitting

    No full text
    The low quantum efficiency arising from poor charges transfer and insufficient light absorption is one of the critical challenges toward achieving highly efficient water splitting in photoelectrochemical cells. Three dimensions (3D) structures and heterojunctions have received intensive research interests recent years due to their excellent ability to separate photo-generated charges as well as the enhanced light harvesting property. Herein, 3D CuO/WO3 structure was fabricated through a facile solvothermal method followed by chemical bath deposition. The loading of CuO clusters on WO3 nanoflake arrays results in a much improved photocurrent density compared with that of pristine WO3 nanoflake arrays, which reaches 1.8 mA/cm2 at 1.23 V vs. the reversible hydrogen electrode. The electrochemical impedance spectroscopy measurement demonstrates that the improved performance of CuO/WO3 electrode is attributed to the accelerated charge transfer kinetics as a result of the desirable band alignment in CuO/WO3 heterojunction. This work demonstrates a facile strategy to construct superior WO3 electrode, which will ultimately allow for efficient storage of solar energy into hydrogen. Keywords: Photoelectrochemistry, Water splitting, Tungsten trioxide photoanode, CuO clusters, Heterojunctio
    • …
    corecore