92 research outputs found

    A PCA and ELM Based Adaptive Method for Channel Equalization in MFL Inspection

    Get PDF
    Magnetic flux leakage (MFL) as an efficient method for pipeline flaw detection plays important role in pipeline safety. This nondestructive test technique assesses the health of the buried pipeline. The signal is gathered by an array of hall-effect sensors disposed at the magnetic neutral plane of a pair of permanent magnet in the pipeline inspection gauge (PIG) clinging to the inner surface of the pipe wall. The magnetic flux measured by the sensors reflects the health condition of the pipe. The signal is influenced by not only the condition of the pipe, but also by the lift-off value of the sensors and various properties of electronic component. The consistency of the position of the sensors is almost never satisfied and each sensor measures differently. In this paper, a new scheme of channel equalization is proposed for MFL signal in order to correct sensor misalignments, which eventually improves accuracy of defect characterization. The algorithm proposed in this paper is adaptive to the effects of error on the disposition of the sensor due to manufacturing imperfections and movements of the sensors. The algorithm is tested by data acquired from an experimental pipeline. The results show the effectiveness of the proposed algorithm

    Stability-Oriented Minimum Switching/Sampling Frequency for Cyber-Physical Systems:Grid-Connected Inverters Under Weak Grid

    Get PDF

    Safety and efficacy of Hypofractionated stereotactic radiosurgery for high-grade Gliomas at first recurrence: a single-center experience.

    Get PDF
    BACKGROUND: The optimal treatment for recurrent high-grade gliomas (rHGGs) remains uncertain. This study aimed to investigate the efficacy and safety of hypofractionated stereotactic radiosurgery (HSRS) as a first-line salvage treatment for in-field recurrence of high-grade gliomas. METHODS: Between January 2016 and October 2019, 70 patients with rHGG who underwent HSRS were retrospectively analysed. The primary endpoint was overall survival (OS), and secondary endpoints included both progression-free survival (PFS) and adverse events, which were assessed according to Common Toxicity Criteria Adverse Events (CTCAE) version 5. The prognostic value of key clinical features (age, performance status, planning target volume, dose, use of bevacizumab) was evaluated. RESULTS: A total of 70 patients were included in the study. Forty patients were male and 30 were female. Forty-nine had an initial diagnosis of glioblastoma (GBM), and the rest (21) were confirmed to be WHO grade 3 gliomas. The median planning target volume (PTV) was 16.68 cm3 (0.81–121.96 cm3 ). The median prescribed dose was 24 Gy (12–30 Gy) in 4 fractions (2–6 fractions). The median baseline of Karnofsky Performance Status (KPS) was 70 (40–90). With a median follow-up of 12.1 months, the median overall survival after salvage treatment was 17.6 months (19.5 and 14.6 months for grade 3 and 4 gliomas, respectively; p = .039). No grade 3 or higher toxicities was recorded. Multivariate analysis showed that concurrent bevacizumab with radiosurgery and KPS \u3e 70 were favourable prognostic factors for grade 4 patients with HGG. CONCLUSIONS: Salvage HSRS showed a favourable outcome and acceptable toxicity for rHGG. A prospective phase II study (NCT04197492) is ongoing to further investigate the value of hypofractionated stereotactic radiosurgery (HSRS) in rHGG

    Cactus pear: a natural product in cancer chemoprevention

    Get PDF
    BACKGROUND: Cancer chemoprevention is a new approach in cancer prevention, in which chemical agents are used to prevent cancer in normal and/or high-risk populations. Although chemoprevention has shown promise in some epithelial cancers, currently available preventive agents are limited and the agents are costly, generally with side effects. Natural products, such as grape seed, green tea, and certain herbs have demonstrated anti-cancer effects. To find a natural product that can be used in chemoprevention of cancer, we tested Arizona cactus fruit solution, the aqueous extracts of cactus pear, for its anti-cancer effects in cultured cells and in an animal model. METHOD: Aqueous extracts of cactus pear were used to treat immortalized ovarian and cervical epithelial cells, as well as ovarian, cervical, and bladder cancer cells. Aqueous extracts of cactus pear were used at six concentrations (0, 0.5, 1, 5, 10 or 25%) to treat cells for 1, 3, or 5 days. Growth inhibition, apoptosis induction, and cell cycle changes were analyzed in the cultured cells; the suppression of tumor growth in nude mice was evaluated and compared with the effect of a synthetic retinoid N-(4-hydroxyphernyl) retinamide (4-HPR), which is currently used as a chemoprevention agent. Immunohistochemistry staining of tissue samples from animal tumors was performed to examine the gene expression. RESULTS: Cells exposed to cactus pear extracts had a significant increase in apoptosis and growth inhibition in both immortalized epithelial cells and cancer cells in a dose- and time-dependent manner. It also affected cell cycle of cancer cells by increasing G1 and decreasing G2 and S phases. Both 4-HPR and cactus pear extracts significantly suppressed tumor growth in nude mice, increased annexin IV expression, and decreased VEGF expression. CONCLUSION: Arizona cactus pear extracts effectively inhibited cell growth in several different immortalized and cancer cell cultures, suppressed tumor growth in nude mice, and modulated expression of tumor-related genes. These effects were comparable with those caused by a synthetic retinoid currently used in chemoprevention trials. The mechanism of the anti-cancer effects of cactus pear extracts needs to be further studied

    Chaotifying fuzzy hyperbolic model using adaptive inverse optimal control approach

    No full text
    In this paper, the problem of chaotifying the continuous-time fuzzy hyperbolic model (FHM) is studied. By tracking the dynamics of a chaotic system, a controller based on inverse optimal control and adaptive parameter tuning methods is designed to chaotify the FHM. Simulation results show that for any initial value the FHM can track a chaotic system asymptotically
    • …
    corecore