28 research outputs found

    Developing risk indicator system of non-compliance for organic crop farms based on China organic regulations

    Get PDF
    Abstract Farming management and certification are essential for organic agriculture development to make sure that farming practices are compliant with organic regulations. To improve the efficiency of organic certification and farm management, a risk-based indicator system of organic crop production was established according to literature review and Chinese organic regulations. Three dimensions, 11 themes, and 25 indicators were selected and the weights of which were determined through Analytic Hierarchy Process. The highest weight was assigned to the production dimension (0.59), followed by management (0.24) and environment (0.17). The three highest risk themes in the sequence were plant protection, detection and soil fertility management with a weight of 0.17, 0.15 and 0.12, respectively. At the indicator level, pesticide detection rate, nutrient satisfaction rate, the proportion of non-chemical treatment, the severity of crop diseases, pests and weeds, and the quality of soil environment ranked top five according to the weight of their risk. Chemicals application including pesticides and fertilizers was the main concern in organic production and certification. The results will provide producers, inspectors, and certifiers useful references to reduce the risk of non-compliance, and increase the integrity and credibility during organic production and certification

    Lidocaine represses the malignant behavior of lung carcinoma cells via the circ_PDZD8/miR-516b-5p/GOLT1A axis

    No full text
    Lung carcinoma is the most prevalent malignancy in adults. Lidocaine (Lido) has been confirmed to exert an anti-tumor role in many human cancers. However, the role and underlying mechanism of Lido in lung carcinoma remain poorly understood. Cell proliferation ability, migration, invasion, and apoptosis were measured by Colony formation, 5-ethynyl-2'- deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), transwell, and flow cytometry assays. Circ_PDZD8, microRNA-516b-5p (miR-516b-5p), and Golgi transport 1A (GOLT1A) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Protein levels of proliferating cell nuclear antigen (PCNA) and GOLT1A were examined by western blot assay. The binding relationship between miR-516b-5p and circ_PDZD8 or GOLT1A was predicted by circular RNA Interactome or Starbase 3.0 and then verified by a dual-luciferase reporter assay. The biological roles of circ_PDZD8 and Lido on lung carcinoma cell growth were examined by the xenograft tumor model in vivo. Lido suppressed proliferation, migration, invasion, and induced apoptosis in lung carcinoma cells. Circ_PDZD8 and GOLT1A were increased, miR-516b-5p was decreased in lung carcinoma tissues and cell lines. Their expression presented the opposite trend in Lido-triggered lung carcinoma cells. Circ_PDZD8 might overturn the repression of Lido on cell growth ability and metastasis in this tumor. Mechanically, circ_PDZD8 might regulate GOLT1A expression by sponging miR-516b-5p. Circ_PDZD8 weakened the anti-lung carcinoma effect of Lido in vivo. Circ_PDZD8 might mitigate the inhibitory effect of Lido on tumor cell malignancy by modulating the miR-516b-5p/GOLT1A axis, providing a novel insight for lung carcinoma treatment

    Dynamic Pricing of Tropical Fruits in Hainan Based on Internet of Things Technology

    No full text
    In recent years, the Internet of Things (IoT) technology has been widely used in the production and sales of tropical fruits, with strong practicability and wide application prospects. The tropical fruit dynamic pricing model based on the IoT technology can promote the healthy development of the tropical fruit industry in Hainan and ensure the income of fruit farmers. Based on IoT technology, the quality grade of tropical fruits in Hainan is obtained. According to the dynamic pricing strategy of revenue management, a dynamic pricing model based on the quality of tropical fruits and a dynamic pricing model based on consumer segmentation are established to study the dynamic pricing problem under the condition of maximum profit for tropical fruit sellers. The research results show that for different fruit quality and consumer groups, different pricing models are required for pricing, in order to get the maximum profit from tropical fruit sales. Sellers must flexibly adopt different dynamic pricing models to price tropical fruits to enhance the competitiveness of the tropical fruit industry

    Absorption and Bio-Transformation of Selenium Nanoparticles by Wheat Seedlings (Triticum aestivum L.)

    No full text
    Elemental selenium is one of the dominant selenium species in soil, but the mechanism of its uptake by plants is still unclear. In this study, nanoparticles of elemental selenium (SeNPs) with different sizes were prepared, and their uptake and transformation in wheat (Triticum aestivum L.) were analyzed in hydroponic experiments by HPLC-ICP-MS. We found that the SeNPs can be absorbed by wheat seedlings, and the process is energy independent. The addition of aquaporins inhibitor caused 92.5 and 93.4% inhibition of chemosynthesized SeNPs (CheSeNPs) and biosynthesized SeNPs (BioSeNPs) absorption by wheat roots, respectively. The 40 nm SeNPs uptake by wheat roots was 1.8-fold and 2.2-fold higher than that of 140 and 240 nm, respectively. The rate of SeNPs uptake in wheat was much slower than that of selenite [Se (IV)], and CheSeNPs were more efficiently absorbed than BioSeNPs. The SeNPs were rapidly oxidized to Se (IV) and converted to organic forms [selenocystine (SeCys2), se-methyl-selenocysteine (MeSeCys), and selenomethionine (SeMet)] after they were absorbed by wheat roots. Additionally, we demonstrated that the aquaporin function in some way is related to the absorption of SeNPs. The particle size and synthesis method of the SeNPs affected their uptake rates by plants. Taken together, our results provide a deep understanding of the SeNPs uptake mechanism in plants

    Photodegradation of glyphosate in water and stimulation of by-products on algae growth

    No full text
    Glyphosate is the most widely used herbicide in global agricultural cultivation. However, little is known about the environmental risks associated with its migration and transformation. We conducted light irradiation experiments to study the dynamics and mechanism of photodegradation of glyphosate in ditches, ponds and lakes, and evaluated the effect of glyphosate photodegradation on algae growth through algae culture experiments. Our results showed that glyphosate in ditches, ponds and lakes could undergo photochemical degradation under sunlight irradiation with the production of phosphate, and the photodegradation rate of glyphosate in ditches could reach 86% after 96 h under sunlight irradiation. Hydroxyl radicals (•OH) was the main reactive oxygen species (ROS) for glyphosate photodegradation, and its steady-state concentrations in ditches, ponds and lakes were 6.22 × 10−17, 4.73 × 10−17, and 4.90 × 10−17 M. The fluorescence emission-excitation matrix (EEM) and other technologies further indicated that the humus components in dissolved organic matter (DOM) and nitrite were the main photosensitive substances producing •OH. In addition, the phosphate generated by glyphosate photodegradation could greatly promote the growth of Microcystis aeruginosa, thereby increasing the risk of eutrophication. Thus, glyphosate should be scientifically and reasonably applied to avoid environmental risks

    Characterization of an Artificial Liver Support System-Related Vasovagal Reaction

    No full text
    Objective. An artificial liver support system (ALSS) is an effective therapy for patients with severe liver injury. A vasovagal reaction (VVR) is a common complication in various treatment settings but has not been reported previously in ALSS. Methods. This study retrospectively evaluated patients who suffered an ALSS-related VRR between January 2018 and June 2019. We collected data from VVR episodes including onset time, duration, changes in heart rate (HR) and blood pressure (BP), and drug treatment. Results. Among 637 patients who underwent ALSS treatment, 18 were included in the study. The incidence of VVR was approximately 2.82%. These patients were characterized by a rapid decrease in BP or HR with associated symptoms such as chest distress, nausea, and vomiting. The majority of patients (78%) suffered a VVR during their first ALSS treatment. Sixteen patients (89%) had associated symptoms after treatment began. Sixteen patients (89%) received human albumin or Ringer’s solution. Atropine was used in 11 patients (61%). The symptoms were relieved within 20 min in 15 patients and over 20 min in 3 patients. Conclusions. A VVR is a rare complication in patients with severe liver injury undergoing ALSS treatment. Low BP and HR are the main characteristics of a VVR

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Table_1_Absorption and Bio-Transformation of Selenium Nanoparticles by Wheat Seedlings (Triticum aestivum L.).doc

    No full text
    <p>Elemental selenium is one of the dominant selenium species in soil, but the mechanism of its uptake by plants is still unclear. In this study, nanoparticles of elemental selenium (SeNPs) with different sizes were prepared, and their uptake and transformation in wheat (Triticum aestivum L.) were analyzed in hydroponic experiments by HPLC-ICP-MS. We found that the SeNPs can be absorbed by wheat seedlings, and the process is energy independent. The addition of aquaporins inhibitor caused 92.5 and 93.4% inhibition of chemosynthesized SeNPs (CheSeNPs) and biosynthesized SeNPs (BioSeNPs) absorption by wheat roots, respectively. The 40 nm SeNPs uptake by wheat roots was 1.8-fold and 2.2-fold higher than that of 140 and 240 nm, respectively. The rate of SeNPs uptake in wheat was much slower than that of selenite [Se (IV)], and CheSeNPs were more efficiently absorbed than BioSeNPs. The SeNPs were rapidly oxidized to Se (IV) and converted to organic forms [selenocystine (SeCys<sub>2</sub>), se-methyl-selenocysteine (MeSeCys), and selenomethionine (SeMet)] after they were absorbed by wheat roots. Additionally, we demonstrated that the aquaporin function in some way is related to the absorption of SeNPs. The particle size and synthesis method of the SeNPs affected their uptake rates by plants. Taken together, our results provide a deep understanding of the SeNPs uptake mechanism in plants.</p
    corecore