19 research outputs found

    Genome-Wide Association Study Reveals Both Overlapping and Independent Genetic Loci to Control Seed Weight and Silique Length in Brassica napus

    Get PDF
    Seed weight (SW) is one of three determinants of seed yield, which positively correlates with silique length (SL) in Brassica napus (rapeseed). However, the genetic mechanism underlying the relationship between seed weight (SW) and silique length (SL) is largely unknown at present. A natural population comprising 157 inbred lines in rapeseed was genotyped by whole-genome re-sequencing and investigated for SW and SL over four years. The genome-wide association study identified 20 SNPs in significant association with SW on A01, A04, A09, C02, and C06 chromosomes and the phenotypic variation explained by a single locus ranged from 11.85% to 34.58% with an average of 25.43%. Meanwhile, 742 SNPs significantly associated with SL on A02, A03, A04, A07, A08, A09, C01, C03, C04, C06, C07, and C08 chromosomes were also detected and the phenotypic variation explained by a single locus ranged from 4.01 to 48.02% with an average of 33.33%, out of which, more than half of the loci had not been reported in the previous studies. There were 320 overlapping or linked SNPs for both SW and SL on A04, A09, and C06 chromosomes. It indicated that both overlapping and independent genetic loci controlled both SW and SL in B. napus. On the haplotype block on A09 chromosome, the allele variants of a known gene BnaA.ARF18.a controlling both SW and SL were identified in the natural population by developing derived cleaved amplified polymorphic sequence (dCAPS) markers. These findings are valuable for understanding the genetic mechanism of SW and SL and also for rapeseed molecular breeding programs

    Etiologic Diagnosis of Lower Respiratory Tract Bacterial Infections Using Sputum Samples and Quantitative Loop-Mediated Isothermal Amplification

    Get PDF
    Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship

    BnKAT2 Positively Regulates the Main Inflorescence Length and Silique Number in Brassica napus by Regulating the Auxin and Cytokinin Signaling Pathways

    No full text
    Brassica napus is the dominant oil crop cultivated in China for its high quality and high yield. The length of the main inflorescence and the number of siliques produced are important traits contributing to rapeseed yield. Therefore, studying genes related to main inflorescence and silique number is beneficial to increase rapeseed yield. Herein, we focused on the effects of BnKAT2 on the main inflorescence length and silique number in B. napus. We explored the mechanism of BnKAT2 increasing the effective length of main inflorescence and the number of siliques through bioinformatics analysis, transgenic technology, and transcriptome sequencing analysis. The full BnKAT2(BnaA01g09060D) sequence is 3674 bp, while its open reading frame is 2055 bp, and the encoded protein comprises 684 amino acids. BnKAT2 is predicted to possess two structural domains, namely KHA and CNMP-binding domains. The overexpression of BnKAT2 effectively increased the length of the main inflorescence and the number of siliques in B. napus, as well as in transgenic Arabidopsis thaliana. The type-A Arabidopsis response regulator (A-ARR), negative regulators of the cytokinin, are downregulated in the BnKAT2-overexpressing lines. The Aux/IAA, key genes in auxin signaling pathways, are downregulated in the BnKAT2-overexpressing lines. These results indicate that BnKAT2 might regulate the effective length of the main inflorescence and the number of siliques through the auxin and cytokinin signaling pathways. Our study provides a new potential function gene responsible for improvement of main inflorescence length and silique number, as well as a candidate gene for developing markers used in MAS (marker-assisted selection) breeding to improve rapeseed yield

    Identification of a candidate QTG for seed number per silique by integrating QTL mapping and RNA-seq in Brassica napus L.

    No full text
    Seed number per silique (SNPS) is one of seed yield components in rapeseed, but its genetic mechanism remains elusive. Here a double haploid (DH) population derived from a hybrid between female 6Q006 with 35–40 SNPS and male 6W26 with 10–15 SNPS was investigated for SNPS in the year 2017, 2018, 2019 and 2021, and genotyped with Brassica 60K Illumina Infinium SNP array. An overlapping major QTL (qSNPS.C09) explaining 51.50% of phenotypic variance on average was narrowed to a 0.90 Mb region from 44.87 Mb to 45.77 Mb on chromosome C09 by BSA-seq. Subsequently, two DEGs in this interval were detected between extreme individuals in DH and F2 populations by transcriptome sequencing at 7 and 14 days after pollination siliques. Of which, BnaC09g45400D encoded an adenine phosphoribosyltransferase 5 (APT5) has a 48-bp InDel variation in the promoter of two parents. Candidate gene association analysis showed that this InDel variation was associated with SNPS in a nature population of rapeseed, where 54 accessions carrying the same haplotype as parent 6Q006 had higher SNPS than 103 accessions carrying the same haplotype as parent 6W26. Collectively, the findings are helpful for rapeseed molecular breeding of SNPS, and provide new insight into the genetic and molecular mechanism of SNPS in rapeseed

    Detection of new candidate genes controlling seed weight by integrating gene coexpression analysis and QTL mapping in Brassica napus L.

    No full text
    Seed weight is a component of seed yield in rapeseed (Brassica napus L.). Although quantitative trait loci (QTL) for seed weight have been reported in rapeseed, only a few causal quantitative trait genes (QTGs) have been identified, resulting in a limitation in understanding of seed weight regulation. We constructed a gene coexpression network at the early seed developmental stage using transcripts of 20,408 genes in QTL intervals and 1017 rapeseed homologs of known genes from other species. Among the 10 modules in this gene coexpression network, modules 1 and 2 were core modules and contained genes involved in source–flow–sink processes such as synthesis and transportation of fatty acid and protein, and photosynthesis. A hub gene SERINE CARBOXYPEPTIDASE-LIKE 19 (SCPL19) was identified by candidate gene association analysis in rapeseed and functionally investigated using Arabidopsis T-DNA mutant and overexpression lines. Our study demonstrates the power of gene coexpression analysis to prioritize candidate genes from large candidate QTG sets and enhances the understanding of molecular mechanism for seed weight at the early developmental stage in rapeseed

    Table_1_Genome-Wide Association Study Reveals Both Overlapping and Independent Genetic Loci to Control Seed Weight and Silique Length in Brassica napus.XLSX

    No full text
    <p>Seed weight (SW) is one of three determinants of seed yield, which positively correlates with silique length (SL) in Brassica napus (rapeseed). However, the genetic mechanism underlying the relationship between seed weight (SW) and silique length (SL) is largely unknown at present. A natural population comprising 157 inbred lines in rapeseed was genotyped by whole-genome re-sequencing and investigated for SW and SL over four years. The genome-wide association study identified 20 SNPs in significant association with SW on A01, A04, A09, C02, and C06 chromosomes and the phenotypic variation explained by a single locus ranged from 11.85% to 34.58% with an average of 25.43%. Meanwhile, 742 SNPs significantly associated with SL on A02, A03, A04, A07, A08, A09, C01, C03, C04, C06, C07, and C08 chromosomes were also detected and the phenotypic variation explained by a single locus ranged from 4.01 to 48.02% with an average of 33.33%, out of which, more than half of the loci had not been reported in the previous studies. There were 320 overlapping or linked SNPs for both SW and SL on A04, A09, and C06 chromosomes. It indicated that both overlapping and independent genetic loci controlled both SW and SL in B. napus. On the haplotype block on A09 chromosome, the allele variants of a known gene BnaA.ARF18.a controlling both SW and SL were identified in the natural population by developing derived cleaved amplified polymorphic sequence (dCAPS) markers. These findings are valuable for understanding the genetic mechanism of SW and SL and also for rapeseed molecular breeding programs.</p

    Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus

    No full text
    Abstract Yellow-seed trait is a desirable breeding characteristic of rapeseed (Brassica napus) that could greatly improve seed oil yield and quality. However, the underlying mechanisms controlling this phenotype in B. napus plants are difficult to discern because of their complexity. Here, we assemble high-quality genomes of yellow-seeded (GH06) and black-seeded (ZY821). Combining in-depth fine mapping of a quantitative trait locus (QTL) for seed color with other omics data reveal BnA09MYB47a, encoding an R2R3-MYB-type transcription factor, as the causal gene of a major QTL controlling the yellow-seed trait. Functional studies show that sequence variation of BnA09MYB47a underlies the functional divergence between the yellow- and black-seeded B. napus. The black-seed allele BnA09MYB47aZY821, but not the yellow-seed allele BnA09MYB47aGH06, promotes flavonoid biosynthesis by directly activating the expression of BnTT18. Our discovery suggests a possible approach to breeding B. napus for improved commercial value and facilitates flavonoid biosynthesis studies in Brassica crops
    corecore